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Foreword

The field of Machine Learning plays an increasingly important role in sci-

ence and engineering. Over the past two decades, the availability of powerful

computing resources has opened the door to synergistic interactions between

empirical and theoretical studies of Machine Learning, showing the value of

the “learning from example” paradigm in a wide variety of applications. Never-

theless, in many such practical scenarios the performance of many algorithms

often depends crucially on manually engineered features or hyperparameter

settings, which often make the difference between bad and state-of-the-art

performance. Tools from statistical learning theory allow to estimate the sta-

tistical performance of learning algorithm and provide a means to better un-

derstand the factors that influence algorithm’s behavior, ultimately suggesting

ways to improve the algorithms or designing novel ones. This book reviews

in an intelligible and synthetic way the problem of tuning and assessing the

performance of an algorithm allowing both young researches and experienced

data scientists to gain a broad overview of the key problems underlying model

selection, state-of-the-art solutions, and key open questions.
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Preface

How can we select the best performing data-driven model? How can we rig-

orously estimate its generalization error? Statistical Learning Theory (SLT)

answers these questions by deriving non-asymptotic bounds on the gener-

alization error of a model or, in other words, by upper bounding the true

error of the learned model based just on quantities computed on the available

data. However, for a long time, SLT has been considered only an abstract

theoretical framework, useful for inspiring new learning approaches, but with

limited applicability to practical problems. The purpose of this book is to give

an intelligible overview of the problems of Model Selection (MS) and Error

Estimation (EE), by focusing on the ideas behind the different SLT-based

approaches and simplifying most of the technical aspects with the purpose of

making them more accessible and usable in practice. We will start by present-

ing the seminal works of the 80’s until the most recent results, then discuss

open problems and finally outline future directions of this field of research.
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1

Introduction

How can we select the best performing data-driven model and quantify its

generalization error? This question has received a solid answer from the field

of statistical inference since the last century and before [54, 221].

The now classic approach of parametric statistics [80, 101, 262] identifies a

family of models (e.g. linear functions), a noise assumption (e.g. Gaussian)

and, given some data, easily provides a criteria for choosing the best model,

along with a quantification of the uncertainty or, in modern terms, an esti-

mation of the generalization error in terms of a confidence interval. On the

contrary, non-parametric statistics addresses the problem of deriving all the

information directly from the data, without any assumption on the model fam-

ily nor any other information that is external to the data set itself [218, 275].

With the advent of the digital information era, this approach has gained more

and more popularity, up to the point of suggesting that effective data-driven

models, with the desired accuracy, can be generated by simply collecting more

and more data (see the work of Dhar [77] for some insights on this provocative

and inexact but, unfortunately, widespread belief).

However, is it really possible to perform statistical inference for building pre-

dictive models without any assumption? Unfortunately, the series of no-free-

lunch theorems provided a negative answer to this question [276]. They also

showed that, in general, is not even possible to solve apparently simpler prob-

lems, like differentiating noise from data, no matter how large the data set

is [165].

SLT addresses exactly this problem, by trying to find necessary and sufficient

conditions for non-parametric inference to build data-driven models from data

or, using the language of SLT, learn an optimal model from data [265]. The
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main SLT results have been obtained by deriving non-asymptotic bounds on

the generalization error of a model or, to be more precise, upper and lower

bounds on the excess risk between the optimal predictor and the learned

model, as a function of the, possibly infinite and unknown, family of models

and the number of available samples [265].

An important byproduct of SLT has been the (theoretical) possibility of ap-

plying these bounds for solving the problems raised by our first question,

about the quality and the performance of the learned model. However, for a

long time, SLT has been considered only a theoretical, albeit very sound and

deep, statistical framework, without any real applicability to practical prob-

lems [263]. Only in the last decade, with important advances in this field, it has

been shown that SLT can provide practical answers [10, 25, 85, 110, 147, 195].

We review here the main results of SLT for the purpose to select the best

performing data-driven model and to quantify its generalization error. Note

that we will not cover all the approaches available in the literature, since it

would be almost impossible and also not very useful, but we will cover only the

ground-breaking results in the field since all the other approaches can be seen

as a small modification or combination of these ground-breaking achievements.

Inspired by the idea of Shewchuk [244], our purpose is to provide an intelligible

overview of the ideas, the hypotheses, the advantages and the disadvantages

of the different approaches developed in the SLT framework. SLT is still an

open field of research but can be the starting point for a better understanding

of the methodologies able to rigorously assess the performance and reliability

of data-driven models.
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The “Five W” of MS & EE

Before starting with the technical parts we would like to answer five simple

questions regarding the problem of MS and EE:

• What is MS and EE?

• Why should we care?

• Who should care?

• Where and When this problem has been addressed?

For what concerns the first “W”, MS and EE can be defined respectively as

the problem of selecting the data-driven model with the highest accuracy and

the problem of estimating the error that the selected model will exhibit on

previously unseen data by relying only on the available data. Example of MS

problems are: choosing between different learning algorithms (e.g. Support

Vector Machines [265], Random Forests [51], Neural Networks [39], Gaussian

Processes [220], Nearest Neighbor [72], and Decision Trees [216]), setting the

hyperparameters of a learning algorithm (e.g. the regularization in Support

Vector Machines, the number of layers and neurons per layer in a Neural

Network, the depth of a Decision Tree, and k in k-Nearest Neighbor), and

choosing the structure of a learning algorithm (e.g. the type of regularizer

in Regularize Least Squares [259, 282] and the families of kernels in Multi-

ple Kernel Learning [106]). Once all the choices have been performed during

the MS phase and the data-driven model has been built, the EE phase deals

with the problem of estimating the error that this model will exibit on pre-

viously unseen data based on different tools such as: probability inequalities

(e.g. Hoeffding Inequalities [118], Clopper-Pearson Inequalities [67]), concen-

tration inequalities (e.g. Bounded Difference Function [181], Self Bounding

Functions [46, 48, 134, 254]), and moment inequalities [47]. Note that, in this
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work, we will deal only with methods which do not make any assumption on

the noise that corrupts the data and that require only quantities that can be

computed on the data themselves.

Regarding the second “W”, MS and EE is a fundamental issue when it comes

built data driven models. The first reason is that even advanced practitioners

and researchers in the field often fail to perform MS and EE in the correct way.

A quite representative evidence of this fact is a recent work published in one

of the best journals in the field [95] where the performance of the state-of-the-

art learning algorithms have been compared on a large series of benchmark

datasets. In this work it is stated that Random Forests is the best performing

algorithm but in a recent work [271] other researchers showed that the original

work [95] contained a pretty serious flaws in how the MS and EE have been

performed: in particular, an hold out dataset was missing leading to biased

results. The second reason is rather simple: any data scientist wants to build

the best data-driven model in terms of accuracy and have an idea of its actual

performances when the model will be exploited in a real world environment.

The third reason is that a series of no-free-lunch theorems [97, 276] ensure us

that MS and EE will be always necessary since there will never exist a golden

learning algorithm able to solve all the data related problems in the optimal

way. The last, but not less important, reason is that in literature, due to the

lack of knowledge of the problem of MS and EE, most of the research findings

are false or report biased results [115, 120].

Regarding the “Who”, the answer is a simple consequence of the “Why”

since every data scientist, machine learner, data miner, and every practitioner

which uses data should understand these concepts in order to provide reliable

analyses, results, insights, and models. Probably the most technical issues of

MS and EE are not fundamental for practitioners but having a general idea

of the problems and the state-of-the-art tools and techniques able to address

them is crucial for everyone in order to obtain rigorous and unbiased results.

Finally for the “Where” and “When” the answer, is simpler. The problem of

MS and EE have been addressed in very theoretical Machine Learning and

advanced Statistics papers mainly from the 1960 until today. Because of its

intrinsic theoretical foundations it is prohibitive for a practitioner to read

and comprehend the notation and the ideas proposed in these papers. This

book is born from this observation and from a quite inspiring work on the

gradient descend algorithm [244]. In fact, most of the time, the ideas behind

the methods are quite simple and easy to apply but the technicalities and
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the knowledge taken for granted make most of the available literature hard

to comprehend. In this book we will try to keep the presentation as simple

as possible by presenting the problems, the hypotheses, and the ideas behind

the methods without going in too many technical details but still presenting

the state-of-the-art results in the field. In particular, we will start from the

first works of 1960 about probability inequalities [5, 6, 18, 19, 35, 36, 38,

67, 76, 89–91, 118, 137, 170, 175, 195, 255], and proceed with the asymptotic

analysis [1, 43, 96, 265] of 1970, and concentration inequalities [44, 46–48, 134,

154, 155, 254, 256, 257] of 1980, then move to the finite sample analysis [3, 10,

13, 22, 23, 25–27, 30, 32, 33, 37, 40, 55, 102–105, 140, 141, 146, 150, 152, 153,

159, 160, 163, 172, 176, 178–180, 185, 190, 192, 194, 196, 198, 201, 207, 217,

227, 229, 231–236, 240–242, 260, 264, 278] of 1990, the milestone results of the

2000 about learnability [49, 93, 131, 174, 186, 195, 212, 238, 238, 261], until

the most recent results of 2010 on interactive data analysis [41, 56, 58, 83–

85, 94, 114, 115, 124, 145, 189, 191, 219, 250, 273].
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Preliminaries

In this section we will give an overview of the problem of learning based on em-

pirical data. In particular we will first generally discuss about the inference

problems with particular reference to the inductive case and the statistical

tools exploited to assess the performance of the induction process. Then we

will depict, in details, the Supervised Learning (SL) framework, which repre-

sents one of the most successful use of the inductive reasoning. In this section

we will also introduce the main subject of this monograph: the MS and EE

problems.

3.1 Induction and Statistical Inference

Inference is defined as the act or process of deriving logical conclusions from

premises known or assumed to be true [54]. According to the philosopher

Charles Sanders Peirce [210] there are three main different approaches to

inference (see Figure 3.1): deductive, inductive, and abductive reasoning.

In the deductive reasoning based on a rule it is possible to map a case into a

result. An example of deductive reasoning is:

• rule: all the swans in that lake are white

• case: there is a swan coming from that lake

• result: this swan is white

In the inductive reasoning a rule is inferred based on one or more examples of

the mapping between case and result. An example of inductive reasoning is:

• case: this swan comes from that lake

• result: this swan is white

• rule: all the swans in that lake are white
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InductionDeduction Abduction

Case
(Input)

Rule
(Model)

Result
(Output)

Fig. 3.1. Human inference approaches based on the philosopher Charles Sanders

Peirce.

In the abductive reasoning a possible case is inferred based on a result and a

rule. An example of abductive reasoning is:

• result: this swan is white

• rule: all the swans in that lake are white

• case: this swan comes from that lake

Deduction [210, 213, 252] is the simplest inference approach since it does not

imply any risk. The process is exact in the sense that there is no possibility

of making mistakes. Once the rule is assumed to be true and the case is

available there is no source of uncertainty in deriving, through deduction,

the result. In other words deduction is only able to infer a statement that is

already necessarily true from the premises. Mathematics, for example, is one

of the most important example of the importance of the deductive reasoning.

Inductive reasoning [210, 214], instead, implies a certain level of uncertainty

since we are inferring something that is not necessarily true but probable.

In particular we only know that it exists at least one case (the one observed)

where the inferred rule is correct. The inductive reasoning is a simple inference

procedure that allows to increment our level of knowledge, since the induction

allows to infer something that is not possible to logically deduce just based

on the premises. Since the rule cannot be proved it can be falsified, which

means that we can test it with other observations of cases and results [214].

The inductive reasoning is the cornerstone of the scientific method where a

phenomenon is observed and a theory is proposed and remains valid until one

case falsifies it. Consequently another theory must be developed in order to

explain the observations which have falsified the original one. Abduction [210,

214], finally, is the most complex inference approach since abductive reasoning

tries to derive a result which, as in the inductive case, cannot be deduced
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from the premises but, moreover, there is neither one observation which can

tell us that the statement is true. By repeating the observations, differently

from the inductive case, it is not possible to falsify the statement. In order

to falsify the statement, another experiment bust be designed; in other words

the phenomenon must be observed from another point of view. Abductive

inference is at the basis of the most modern scientific theories where, based

on the observed facts and current theories, another theory about unobserved

phenomena is built and the experiments for falsifying it are developed.

In this book we will deal only with the problem of induction, since it is the

only one that can be exploited for increasing our level of knowledge starting

from some observations, and that can be also falsified based on them. In

particular we will deal with the problems of inferring the rule, given some

examples of cases and results. In the field of learning this problem is called

SL, where the rule is an unknown system which maps a point from an input

space (the case) to a point in an output space (the result). But this does not

conclude the learning process. The quality of the learning procedure must be

assessed and tuned by estimating its error based on the desired metric. In

order to reach this goal we will make use of statistical inference techniques.

Among the others it is possible to identify two main approaches to statistical

inference:

• the bayesian one, where the observations are fixed while the unknown

parameters that we want the estimate are described probabilistically;

• the frequentist one, where the observations are a repeatable random sam-

ple (there is the concept of frequency) while the unknown parameters

that we want the estimate remain constant during this repeatable process

(there is no way that probabilities can be associated with them).

Bayesian inference derives the posterior probability PtH|Eu, which represents

the probability of the eventH since we observed the event E (note that since E

has been observed, this implies that PtEu ‰ 0), based on the Bayes’ theorem

which states that:

PtH|Eu “
PtE|HuPtHu

PtEu
. (3.1)

where

• PtE|Hu is the likelihood, which is the probability of observing E given

H;

• PtHu is the prior probability, that is the probability of H before observing

E;
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• PtEu is the marginal likelihood (or evidence), computable from PtE|Hu
and PtHu.

The proof of the Bayes’ theorem is trivial and comes from the definition of

conditional probability. In fact by definition we have that

PtH|Eu “
PtH,Eu
PtEu

, (3.2)

PtE|Hu “
PtH,Eu
PtHu

. (3.3)

Note that if PtEu “ 0 it automatically implies that

PtH,Eu,PtH|Eu,PtH|Eu “ 0. (3.4)

Analogously if PtHu “ 0 we have that

PtH,Eu,PtH|Eu,PtH|Eu “ 0. (3.5)

Consequently we can state that

PtH|EuPtEu “ PtE|HuPtHu, (3.6)

which implies the Bayes’ theorem. The result of a Bayesian approach is the

complete probability distribution of the event H given the available observa-

tion E. From the distribution it is possible to obtain any information about

H. If H is the value of a parameter that characterizes E we can compute the

expected value of the parameter, its credible interval, etc.

Frequentist inference has been associated with the frequentist interpretation

of probability. In particular the observation of an experiment can be consid-

ered as one of an infinite sequence of possible repetitions of the same experi-

ment. Based on this interpretation, the aim of the frequentist approach is to

draw conclusions from data which are true with a given (high) probability,

among this infinite set of repetitions of the experiment. Another interpreta-

tion, which does not rely on the frequency interpretation of probability, states

that probability relates to a set of random events which are defined before the

observation takes place. In other words an experiment should include, before

performing the experiment, decisions about exactly which steps will be taken

to reach a conclusion from future observations. In a frequentist approach to

inference unknown parameters are considered as fixed and unknown values

that can not be treated as random variables in any sense. The result of a fre-

quentist approach is either a true-or-false conclusion from a significance test
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or a conclusion in the form that a given sample-derived confidence interval

covers the true value: both these conclusions has a given probability of being

correct.

Finally we would like to underline that Bayesian and Frequentist statistics can

be also described in a more informal way. Bayesian statistics tries to describe

in a rigorous way the initial prior belief about a problem and the update

in the belief as some observation about the problem are made by creating

posterior belief. Frequentist statistics, instead, concerns itself with methods

that have guarantees about future observations, no matter the personal belief.

Both approaches are quite natural: regarding the Frequentist statistics, if you

compute something that occurs many times then you can be assured that it

will continue to occur. However, also, the idea of belief is very natural: if you

have prior knowledge about your data then you should try to incorporate it.

Moreover a typical error while applying the Frequentist approach is to run

an experiment, look at the output, and change the experiment design. This

represents the act of incorporating prior belief without taking it into account.

With Bayesian statistics, you can explicitly deal with beliefs.

However in this book we will mainly adopt the Frequentist approach. One can

refer to other works for a general review [110] of the Bayesian approach and

the difference with the Frequentist one.

3.2 The Supervised Learning Problem

In the SL framework the goal is to approximate a generally unknown system,

or rule, S : X Ñ Y, which maps a point x from an input space X into a

point y of an output space Y, through another rule R : X Ñ Y learned

by observing S, which again maps a point x P X into a point py P Y (see

Figure 3.2). The space Z is defined as the cartesian product between the

input and the output space Z “ X ˆ Y and z P Z is a point in this space.

There are many kinds of unknown rules S: the deterministic ones, where a

point x P X is mapped into a single point y P Y, and the probabilistic ones,

where a point x P X can be mapped to different points in y P Y. In this

monograph we assume to always deal with probabilistic rules, since they can

model also the deterministic and hybrid ones. Consequently we suppose that

S can be modelled as a probability distribution µ over Z. Note that, in real

world applications, the use of probabilistic rules is necessary, for example,

because X can be just a subspace of all the inputs of the system S and then,
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x 2 X y 2 Y
S

R by 2 Y
Fig. 3.2. The SL Problem.

even if S is a deterministic system, it may degenerate into a probabilistic one.

Moreover the inputs and outputs of a real system must be measured, stored

and processed, consequently some noise is always introduced and it must be

modelled through probabilistic tools.

Based on the properties of the output space it is possible to define different

SL problems: the classification problems, where the output space consists in a

finite set of possibilities and there is no hierarchy between the different y P Y,

and the regression problems, where Y is a subset of a possibly infinite set of

outputs and there is a hierarchy between the different y P Y.

From S it is possible to retrieve a series of n examples of mapping, which are

called labelled samples Dn. Note that, in general, n is fixed, hence we cannot

ask for more samples. The goal in the SL framework is to map Dn P Zn into

a rule R belonging to a set of possible ones R during the so called learning

phase. The mapping is performed by a learning algorithm: A : Zn Ñ R. Note

that R can be:

• a deterministic rule where R is a deterministic function f : X Ñ Y and R
is a set of deterministic functions F (or hypothesis space). In other words,

once f˚ P F is chosen by A in order to predict the true label y P Y
associated to a point x P X , we have to apply f to x and thus we obtain

py “ fpxq with py P Y. Note that to each point x P X is associated always

with the same py P Y even if we classify a point x P X many times;

• a probabilistic rule (or randomized function) where R is a probability

distribution Q over a set of deterministic functions F and R is a set of

possible distributions Q. In other words, once a Q˚ P Q is chosen by A

in order to predict the label y P Y associated to a point x P X , we have

to sample one function f P F according to Q˚ and then apply f to x in

order to obtain py “ fpxq with py P Y. Note that to each point x P X can
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be associated to a different y P Y if we try to classify a point x P X more

times.

During the presentation we will deal only with deterministic and probabilistic

rules. The same reasoning can be done for A , since it can be:

• a deterministic algorithm, which means that A returns always the same

R if Dn does not change;

• a probabilistic algorithm (or randomized algorithm) where A may return

a different R even if we provide the same dataset Dn to the algorithm A .

The quality of R in approximating S is measured with reference to a loss

function ` : R ˆ Z Ñ R. Mostly we will use a r0, 1s-bounded loss function

since the extension to the ra, bs-bounded is trivial, while to analyze the case

of unbounded losses, one usually truncates the values at a certain threshold

and bounds the probability of exceeding that threshold [111].

Hence it is possible to introduce the concept of generalization (true) error.

For a deterministic rule R P R it is defined as

LpRq “ Lpfq “ Ez„µt`pf, zqu. (3.7)

For probabilistic rule, instead, it is defined as

LpRq “ LpQq “ Ez„µEf„Qt`pf, zqu. (3.8)

Note that the generalization error is one of the most informative quantities

that we can estimate about R. It allows us to give a rigorous measure of

the error of our approximation by stating that, on average, the error of our

approximation with reference to a loss function ` is equal to LpRq.

Let us suppose that the probability distribution over Z is known and that

we have access to all the possible rules (probabilistic and deterministic). By

all the possible rules we mean all the possible ways of mapping X to Y. In

this case it is possible to build the Bayes’ rule, which is the best possible

approximation of S with reference to a loss function ` (see Figure 3.3). The

Bayes’ rule B : X Ñ Y is defined as

RBayes : arg inf LpRq. (3.9)

Unfortunately, in general it is not possible to have access to all the possible

rules but just to a finite set R of possible ones, therefore, in this case, we can

define the best approximation of the Bayes’ rule in R, which is R˚, as

R˚ : arg inf
RPR

LpRq. (3.10)
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R

RBayes

R⇤

bR⇤ Approximation
ErrorEstimation

Error

Fig. 3.3. The Bayes’ rule, its approximation and the different sources of error.

The error due to the choice of R is called approximation error since it is the

error due to the fact that RBayes R R (see Figure 3.3). Unfortunately, in gen-

eral, also the probability distribution over Z is unknown and consequently

LpRq cannot be computed. The only thing that we can do is to use the algo-

rithm A , which basically maps Dn into a rule R according to an heuristic,

that can be more or less strongly theoretically grounded, which tries to find

R˚ P R based just on Dn. The result is a rule pR˚ P R defined as

pR˚ : A pDnq. (3.11)

The rule pR˚ is affected by the estimation error, with respect to R˚, due to

the fact that the probability distribution over Z is unknown and just Dn is

available. Consequently, with respect to RBayes, the rule pR˚ is affected by two

sources of error: the approximation and the estimation errors (see Figure 3.3).

In this monograph we will deal with the problem of learning from empirical

data where the only information available during the learning phase is Dn.

Consequently it is possible to identify several problems that arise during any

learning process: how R must be designed, how A must be designed, how to

choose between different set of rules and different algorithms in order to reduce

the different sources of error, how the generalization error can be estimated

based on Dn.

These issues related to designing R and A are out of the scope of this book.

For a deep treatment of the problem of algorithms design, implementation

and related issues one can refer to many books [39, 63, 113, 237, 274].

The problems that we will face in details in this monograph are, instead the

remaining issues related to any learning process: the MS and the EE phases.

Any algorithm, more or less explicitly, is characterized by a set of hyperpa-

rameters which defines the set of rules from which the algorithm will choose
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the final one. Consequently one of the most critical problems in learning is

how to choose the best configuration of this hyperparameters h in a set of pos-

sible configurations H. The problem could also be generalized to the problem

of choosing between different algorithms. Basically one has to choose between

different algorithms A P A, each one characterized by its configuration of

hyperparameters h P HA

AH “ tAh : A P A, h P HA u . (3.12)

Note that once the best algorithm Ah P AH is chosen the final rule can be

selected by applying the algorithm to the available data Dn. Consequently the

first problem that we will face in this monograph is the one of choosing Ah P

AH based just on the empirical observations (Dn). In the learning process this

phase is MS or, more generally, performance tuning phase.

MS is tightly related with the second issue that we will face in this monograph,

which is how to estimate the generalization error of the learned rule R. This

phase is called EE or, more generally, performance assessment phase. The link

between the MS and EE phases is that the purpose of any learning procedure

is to find the best possible approximation of the Bayes’ rule given Dn, and by

best possible approximation we mean the rule with the smallest generalization

error. In order to estimate the generalization error of a R the state-of-the-art

approach is to use probabilities and concentration inequalities [35, 36, 38, 44,

46–48, 67, 118, 134, 154, 155, 170, 175, 254–257] which allow to prove that

PtLpRq ě ∆u ď δp∆q, (3.13)

where the confidence δ is a function of the accuracy ∆ and vice-versa. In

other words we are able to guarantee, with high probability, that the gener-

alization error will be larger than a particular quantity or alternatively that

the probability of the generalization error to be large is small.

The MS phase is tightly related with the EE one since, if we find a way to

accurately estimate the generalization error of a rule, we can easily obtain a

criterion to select among different rules (i.e. different algorithms or different

configurations of the hyperparameters of the algorithm) by choosing the one

which minimizes the estimated generalization error. This approach, which is

the golden standard, obviously has some drawbacks (see Figure 3.4): the sharp

is the estimation of the generalization error the higher will be the probability

to select the best model (perform a good MS phase) while the loose is the

estimation the lower will be the probability to perform a good MS phase.
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· · ·

Generalization
Error

Estimate
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Error
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Error
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EE: Good

MS: Good
EE: Bad

MS: Bad
EE: Bad

R1 R2 bR⇤

· · ·R1 R2 bR⇤ · · ·R1 R2 bR⇤

Fig. 3.4. Advantages and disadvantages of using EE for MS purposes.

Note that, in this book, we will just present methods for MS and EE that rely

only on Dn in order to be applied. Each method presented will not require

any additional oracle or a-priori knowledge in order to be adopted in practice.

3.3 What Methods Will Be Presented and How?

In this book we will present six approaches to MS and EE:

• Resampling methods (Hold Out, Cross Validation and Bootstrap);

• Complexity-based methods (Union and Shell bounds, V. N. Vapnik and

A. Chernovenkis Theory, Rademacher Complexity Theory);

• Compression bound;

• Algorithmic Stability Theory;

• PAC-Bayes Theory;

• Differential Privacy Theory.
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At the best knowledge of the authors these six approaches are the state-of-the

art ones and any other approach is a modification or combination of the latter.

In order to not overcomplicate the presentation and the notation (and avoid

the agonizing pain) we will use a different notation, as simple as possible, for

each family of methods. This also has the benefit for the reader to focus on

just one particular approach.

For each of the methods we will present the general idea, the hypothesis, the

field of application, the technicalities of the method itself, its advantages and

disadvantages. We will not report too many technical details which can be

retrieved in the original papers.





4

Resampling Methods

Resampling methods [10, 19, 119, 137], also called Out-of-Sample methods, are

favoured by practitioners because they work well in many situations and allow

the application of simple statistical techniques for estimating the quantities of

interest. Some examples of resampling methods are the Hold Out (HO), the

well-known k-Fold Cross Validation [19, 137] (KCV), the Leave-One-Out [100]

(LOO), and the Bootstrap [5, 91] (BTS).

The idea behind these methods is quite simple: if a rule performs well on data

that have not been used for selecting the rule itself than probably the rule

will generalize, namely it will have small generalization error.

The underlying hypothesis that needs to be clearly expressed for supporting

the idea behind the resampling methods is that the data must come from a

phenomenon that does not change in time; basically we are assuming that

the available data and the future sampled data must be independent and

identically distributed (i.i.d.).

Note that these methods can be applied to both deterministic and probabilistic

rules and algorithms.

Resampling techniques rely on a similar approach: the original dataset is re-

sampled, with or without replacement, to build two independent datasets

called, respectively, the learning and validation (or estimation) sets. The first

one is used for learning different rules (through different learning algorithms

and different configurations of the hyperparameters for each algorithm), while

the second one is exploited for estimating the generalization error of each rule

in order to choose the best one (MS phase). Note that the error on the learn-

ing set is obviously optimistically biased but also the one on the validation

set is optimistically biased since we reuse the data many times in order to
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select the best rule (the overvalidation phenomenon). Therefore, in order to

estimate the generalization error of the final rule, it is necessary to possess

a third set, called the test set, by nesting two of the resampling procedures

mentioned above. Since the data in the test set are i.i.d. with respect to the

learning and validation sets the error of the selected rule on the test set rep-

resents an unbiased estimator of the generalization error which can be easily

used to estimate it (EE phase).

Note that the resampling procedure itself may introduce artifacts in the es-

timation process (e.g. unlucky splittings) and must be carefully designed. In

particular it is not clear how to split the data when a small sample is avail-

able [10] and what the size of learning, validation, and test sets should be

with respect to the available observations [6, 20].

More formally let us consider the SL framework where X and Y are, respec-

tively, the input and the output spaces. We consider a set of i.i.d. labeled

samples Dn : tz1, ¨ ¨ ¨ , znu of size n where x P X , y P Y, and z P Z “ X ˆ Y.

The samples in Dn are sampled from an unknown probability distribution

µ over Z. A learning algorithm Ah, characterized by its configuration of the

hyperparameters h, maps Dn into a rule R : AhpDnq. The rule R maps an ele-

ment of the input space X into an element of the output space Y. In particular,

Ah allows designing a rule R P R and the set of rules R. R can be, in general,

unknown [10, 25, 195]. The accuracy of a rule R in representing the hidden

relationship µ is measured with reference to a loss function ` : RˆZ Ñ r0, 1s.

The quantity which we are interested in is the generalization error [265],

namely the error that a model will perform on new data generated by µ

and previously unseen1

LpRq “ Ez`pR, zq. (4.1)

Unfortunately, since µ is unknown, LpRq cannot be computed and, conse-

quently, must be estimated. Then we have to resort to its empirical estimator,

in this case the empirical error [265]

pLpR,Dnq “
1

n

ÿ

zPDn
`pR, zq, (4.2)

together with its variance [175]

pV pR,Dnq “
1

npn´ 1q

ÿ

z1PDn

ÿ

z2PDn
r`pR, z1q ´ `pR, z2qs2. (4.3)

1 For improving the readability of the paper we abbreviate Ez„µ with Ez
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As we described before these techniques rely on a similar idea: the original

dataset Dn is resampled once or many (nr) times, with or without replace-

ment, to build three independent datasets called learning, validation, and test

sets, respectively Lrl , Vrv , and T r
t , with r P t1, ¨ ¨ ¨ , nru. Note that Lrl XVrv “ m,

Lrl X T r
t “ m, and Vrv X T r

t “ m.

Then, in order to select the best algorithm A ˚
h in a set of possible ones A,

together with the best configuration of its hyperparameters chosen in a set of

possible ones for each algorithm HA

AH “ tAh : A P A, h P HA u , (4.4)

or, in other words, to perform the MS phase, we have to apply the following

procedure

A ˚
h : min

AhPAH

1

nr

nr
ÿ

r“1

pLpAhpLrl q,Vrv q. (4.5)

Since the data in Lrl are i.i.d. from the one in Vrv , the idea is that A ˚
h should be

the algorithm, together with its hyperparameters configuration, which allows

to achieve a small error on a dataset that is independent from the training

set.

But why are we selecting this criterion for choosing A ˚
h ? The reason is simple

and yet quite theoretical.

Let us suppose that |AH| “ 1. In this case since the data in Vrv are i.i.d. with

respect to the ones in Lrl , also the errors that AhpLrl q commits on each z P Vrv
are i.i.d. Then, by exploiting for example the Hoeffding Inequality [118], we

can state that

PVrv

!

LpAhpLrl qq ě pLpAhpLrl q,Vrv q `∆
)

ď e´2vt2 , (4.6)

PVrv

!ˇ

ˇ

ˇ
LpAhpLrl qq ´ pLpAhpLrl q,Vrv q

ˇ

ˇ

ˇ
ě ∆

)

ď 2e´2vt2 , (4.7)

or, alternatively, that with probability p1´ δq

LpAhpLrl qq ď pLpAhpLrl q,Vrv q `

d

ln
`

1
δ

˘

2v
, (4.8)

ˇ

ˇ

ˇ
LpAhpLrl qq ´ pLpAhpLrl q,Vrv q

ˇ

ˇ

ˇ
ď

d

ln
`

2
δ

˘

2v
. (4.9)

These exponential bounds state that, with high probability, the distance

between the generalization error and the empirical error goes to zero as
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O
´

a

1{v

¯

. The larger is Vrv the more accurate will be the estimation but

the smaller will be Lrl and then the less data we have for building the rule.

Basically the term
a

ln p1{δq{2v measures the uncertainty due to the fact that

instead of observing the whole population we have observed just Vrv and then

the empirical error has been computed over this set.

If |AH| “ nc ą 1 we need to have nc different validation sets Vrv , one for each

element in AH in order to estimate the generalization error of each rule. This

is obviously not possible since we should partition Dn in too many sets of too

small cardinality.

At the same time, if nc ą 1 and we use always the same validation set Vrv ,

in order to estimate the generalization error of each rule we cannot use the

Hoeffding Inequality since Vrv is used nc times. The solution is to employ the

Hoeffding Inequality [118] in combination with the Bonferroni Correction [45]

and obtain that

PVrv

!

LpAhpLrl qq ě pLpAhpLrl q,Vrv q `∆
)

ď nce
´2vt2 , @Ah P AH, (4.10)

PVrv

!
ˇ

ˇ

ˇ
LpAhpLrl qq ´ pLpAhpLrl q,Vrv q

ˇ

ˇ

ˇ
ě ∆

)

ď 2nce
´2vt2 , @Ah P AH, (4.11)

or, alternatively, that with probability p1´ δq

LpAhpLrl qq ď pLpAhpLrl q,Vrv q `
c

ln pncq

2v
`

d

ln
`

1
δ

˘

2v
, @Ah P AH (4.12)

ˇ

ˇ

ˇ
LpAhpLrl qq ´ pLpAhpLrl q,Vrv q

ˇ

ˇ

ˇ
ď

c

ln pncq

2v
`

d

ln
`

2
δ

˘

2v
, @Ah P AH. (4.13)

In this case the bound is composed by three terms: the first one is the empirical

error of the rule on the validation set, the second one
a

ln pncq{2v depends

on the number of times we exploited the validation set, and the third one
a

ln p1{δq{2v has the same meaning described above.

At this point we can provide a reason behind the approach of Eq. (4.5).

With the approach proposed in Eq. (4.5) we are choosing the algorithms

together with the configuration of their hyperparameters which minimized

the estimated generalization error of the rules selected by those algorithms

(the approach of Figure 3.4) averaged over the nr repetitions of the splitting

procedure.

The EE phase came straightforward from the description of the MS phase,

where we can state that the following bounds hold with probability p1´ δq
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LpA ˚
h pDnqq ď pLpA ˚

h pDnqq `

d

ln
`

1
δ

˘

2t
, (4.14)

ˇ

ˇ

ˇ
LpA ˚

h pDnqq ´ pLpA ˚
h pDnqq

ˇ

ˇ

ˇ
ď

d

ln
`

2
δ

˘

2t
, (4.15)

and where pLpA ˚
h pDnqq “ 1

nr

řnr
r“1

pLpA ˚
h pLrl Y Vrv q, T r

t q for brevity.

In fact, in this case, T r
t is i.i.d. from Lrl Y Vrv , it is used just once and the

Hoeffding Inequality [118] can be exploited.

Note that after A ˚
h is found, one can extract the best rule by training the algo-

rithm with the whole dataset [16] A ˚
h pDnq. Note that this approach, although

sound and adopted as common practice, is not theoretically grounded. The

rigorous approach would be to randomly select one of the rules A ˚
h pLrl Y Vrv q

with r P t1, ¨ ¨ ¨ , nru each time a new sample has to be labeled, but this

procedure is usually not taken into account for practical reasons [10, 16, 19].

Note also that if nr “ 1, if l, v, and t are aprioristically set such that n “

l ` v ` t and if the resample procedure is performed without replacement

we get the hold out method [10]. For implementing the complete k-fold cross

validation, instead, we have to set nr ď
`

n
k

˘`

n´n{k
k

˘

, l “ pk´2qn{k, v “ n{k, and

t “ n{k and the resampling must be done without replacement [10, 19, 137].

Finally, for implementing the bootstrap, l “ n and Lrl must be sampled with

replacement from Dn, while Vrv and T r
t are sampled without replacement from

the sample of Dn that has not been sampled in Lrl [10, 91]. Note that for the

bootstrap procedure nr ď
`

2n´1
n

˘

.

Finally note that the bounds of Eqns. (4.14) and (4.15) can be sharpened

both in the rate of convergence and both in the constants involved in the

bounds [7].

For example we can use a Chernoff-type bound [65] which is sharper when

the empirical error is small and it can exhibit a fast convergence rate O p1{tq

ˇ

ˇ

ˇ
LpA ˚

h pDnqq ´ pLpA ˚
h pDnqq

ˇ

ˇ

ˇ
ď

d

pLpA ˚
h pDnqq

3 ln
`

2
δ

˘

t
`

3 ln
`

2
δ

˘

t
, (4.16)

where the bound holds with probability p1´ δq.

Another option is to use a Bennet-type bound [35, 175] which is sharper when

the variance of the empirical error is small and, as the Chernoff-type bound,

it can exhibit a fast convergence rate O p1{tq

ˇ

ˇ

ˇ
LpA ˚

h pDnqq ´ pLpA ˚
h pDnqq

ˇ

ˇ

ˇ
ď

d

pV pA ˚
h pDnqq

2 ln
`

3
δ

˘

t
`

7 ln
`

3
δ

˘

3pt´ 1q
, (4.17)
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where the bound holds with probability p1´ δq and where, for brevity, we set
pV pA ˚

h pDnqq “ 1
nr

řnr
r“1

pV pA ˚
h pLrlYVrv q, T r

t q.

The state-of-art option is to use the Clopper-Pearson bound [67]. The latter,

in its original form, can be applied just to the cases when ` P t0, 1u (e.g. the

classification problems where ` “ 0 if the predicted class is the same of the

actual class and ` “ 1 otherwise). Based on the result of Clopper-Pearson [67]

we can state that

LpA ˚
h pDnqq P

»

–

Q
”

δ
2 ; tpLpA ˚

h pDnqq, t´ tpLpA ˚
h pDnqq ` 1

ı

,

Q
”

1´ δ
2 ; tpLpA ˚

h pDnqq ` 1, t´ tpLpA ˚
h pDnqq

ı

fi

fl , (4.18)

with probability p1 ´ δq and where Qrp; v, ws is the p-th quantile of the Beta

distribution with shape parameters v and w. Recently the Clopper-Pearson

bound has been extended [59, 193] in order to be applied to the case of r0, 1s-

bounded losses. Let u be a random variable uniformly distributed over r0, 1s

and let tu1, ¨ ¨ ¨ , untu be nt variables sampled i.i.d. from u. Then we can state

that

LpA ˚
h pDnqq P

»

–

Q
”

δ
2 ; tpLupA ˚

h pDnqq, t´ tpLupA ˚
h pDnqq ` 1

ı

,

Q
”

1´ δ
2 ; tpLupA ˚

h pDnqq ` 1, t´ tpLupA ˚
h pDnqq

ı

fi

fl , (4.19)

with probability p1´ δq and where

pLupA ˚
h pDnqq “

1

nr

nr
ÿ

r“1

1

t

ÿ

zPT rt
r`pA ˚

h pLrl Y Vrv q, zq ě uis (4.20)

(each ui is associated with a different z P T r
t and the Iverson bracket nota-

tion [121] is exploited).

The pseudocode of the resampling-based MS and EE strategy is summarized

and simplified in Algorithm 1.
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Algorithm 1: Resampling Methods: MS and EE Strategy.

Input: AH, Dn, Method (HO, LOO, KCV, BOO), nr, l, v, t, and δ

Output: Optimal Model A ˚
h pDnq and its estimated generalization error

LpA ˚
h pDnqq

1 L˚MS “ `8;

2 for Ah P AH do

3 LMS “ 0, LEE “ 0, VEE “ 0 LuEE “ 0 ;

4 for r Ð 1 to nr do

5 Sample tu1, ¨ ¨ ¨utu from u;

6 Split Dn in Lrl , Vrv , and T r
t according to the selected Method ;

7 LMS “ LMS ` 1{nr pLpAhpLrl q,Vrv q ;

8 LEE “ LEE ` 1{nr pLpAhpLrl Y Vrv q, T r
t q ;

9 VEE “ VEE ` 1{nr pV pAhpLrl Y Vrv q, T r
t q ;

10 LuEE “ LuEE `
1
nrt

ř

zPT rt
r`pA ˚

h pL
r
l Y Vrv q, zq ě uis ;

11 if L˚MS ą LMS then

12 L˚MS “ LMS;

13 A ˚
h pDnq “ AhpDnq;

14 Estimate LpA ˚
h pDnqq with one of the bounds of Eqns. (4.14),

(4.16), (4.17), and (4.19) based on δ, pLpA ˚
h pDnqq “ LEE,

pV pA ˚
h pDnqq “ VEE, and pLupA ˚

h pDnqq “ LuEE;
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Complexity-Based Methods

The idea behind the complexity-based methods is that if an algorithm chooses

from a small set of rules it will probably generalize. Basically, if we have a small

set of rules and one of them has small empirical error, the risk of overfitting

the data is small since the probability that this event has happened by chance

is small. Vice versa if we have a large set of rules and one of them has small

empirical error the risk that this event has happened for chance is high.

Complexity-based methods are probably the most investigated methods be-

cause of their relation with many state-of-the-art learning algorithms. In fact,

most learning algorithms define a set of rules and in this set they select the

one with the minimum empirical error. This procedure is called Empirical

Risk Minimization [265] (ERM). ERM usually leads to overfit the training set

and for this reason the set of rules must be resized in order to be neither too

rich to overfit the available data, leading to large generalization error, nor too

simple. This allows to have small empirical error, leading to a small general-

ization error. The process or resizing the set of rules in order to achieve small

generalization error is called Structural Risk Minimization [265] (SRM) and it

is obviously connected to the MS phase. Another key concept in complexity-

based methods is the localization principle, which answers a simple question:

if a set of rules contains few useful rules (rules with small empirical error) and

many useful rules (rules with high empirical error which will never be selected

by any learning algorithm), is it really large? The answer is that just the rules

with small empirical error should be taken into account when measuring the

size of a set of rules, while the other rules should be disregarded (since they

will never be selected by the learning algorithm).
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Complexity-based methods apply to deterministic rules and algorithms. The

set of rules from which the algorithm chooses must be known, before ob-

serving the data, and the available samples must be i.i.d. samples. Obviously

complexity-based methods cannot be applied to many learning algorithms for

which the set of rules in unknown or data dependent.

In this section we will show the three main results in the context of the

complexity-based methods:

1. the first approaches deal with the problem of finite sized sets of rules: the

Union Bound method [45, 265], which takes into account the whole set of

rules, and the Shell Bound method [148, 149], which takes into account

just the rules with small empirical error;

2. the second approaches are based on the seminal work of V. N. Vapnik and

A. Chernovenkis and deal with infinite sized sets of rules for the particular

case of binary classification: the VC-Theory [265], which takes into account

the whole set of rules, and the Local VC-Theory [192] which takes into

account just the rules with small empirical error. Extensions to the general

SL framework have been proposed during the year [28, 240, 265, 280],

but overcomplicated and made obsolete by the Rademacher Complexity

Theory;

3. the last approach is the Rademacher Complexity Theory which deals

with infinite sized sets of rules and the general SL framework: the Global

Rademacher Complexity Theory [30, 139, 194, 196], which takes into ac-

count the whole set of rules, and the Local Rademacher Complexity The-

ory [26, 27, 140, 164, 198] which takes into account just the rules with

small empirical error.

For all the complexity-based approaches, we will use a common notation that

we presented here. We recall then the standard SL framework [30, 265], where

the goal is to approximate a relationship between inputs from a set X and

outputs from a set Y. The relationship between inputs and outputs is encoded

by a fixed, but unknown, probability distribution µ over X ˆY. The element

px, yq P X ˆ Y is defined as a labelled sample: the training phase consists in

exploiting a set Dn : tpx1, x1q, ¨ ¨ ¨ , pxn, ynqu of labelled samples in a learning

algorithm AF , which returns a function f : X Ñ Y chosen in a fixed set F of

possible functions. The learning algorithm maps Dn to f P F and the accuracy

in representing the hidden relationship µ is measured with reference to a loss

function ` : F ˆ X ˆ Y Ñ r0, 1s. For any f P F , we define the generalization

error Lpfq as the expectation of `pfpxq, yq with respect to µ
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Lpfq “ Ex,y`pfpxq, yq, (5.1)

where we assume that each labelled sample is i.i.d. and generated according

to µ. Since µ is unknown, we can only compute its empirical estimate, the

empirical error

pLpfq “
1

n

n
ÿ

i“1

`pfpxiq, yiq. (5.2)

together with the empirical variance

pV pfq “
1

npn´ 1q

n
ÿ

i“1

n
ÿ

j“2

r`pfpxiq, yiq ´ `pfpxjq, yjqs
2. (5.3)

All the quantities strictly related with each particular theory will be presented

in each subsection.

All the fully empirical bounds on the generalization ability of a function f P F
that will be presented in each following subsection of the Complexity based

methods can be used for MS and EE purposes as described in the preliminar-

ies [10, 25, 240]. In fact the bounds will always have the following form

PDntLpfq ď ∆pf,Dn,F , δqu ě 1´ δ, @f P F . (5.4)

Then if we want to choose F˚ P tF1, ¨ ¨ ¨ ,FnF u, namely perform the MS phase,

and estimate the generalization performance of f˚ “ AF˚pDnq, namely per-

form the EE phase, we have to follow the procedure summarized in Algorithm

2. Note that the generalization of the final model is bounded by

Lpf˚q ď ∆

ˆ

f˚,Dn,F˚,
δ

nF

˙

, @f˚ P F˚, @F˚ P tF1, ¨ ¨ ¨ ,FnF u, (5.5)

with probability p1´ δq, since we have applied the Bonferroni correction [45]

over the nF choices for the space of functions [240, 265]. Note that, in Algo-

rithm 2, contrarily to the Resampling methods, the whole data are used both

for training, MS, and EE purposes.

5.1 Union and Shell Bounds

Union and Shell bounds deal with the case of finite |F |. In this case bound-

ing the generalization error of a function chosen in F based on Dn is trivial,
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Algorithm 2: Complexity-based Methods: MS and EE Strategy.

Input: tF1, ¨ ¨ ¨ ,FnF u, Dn, and δ

Output: Optimal Model f˚ and its estimated generalization error Lpf˚q

1 L˚MS “ `8;

2 for F P tF1, ¨ ¨ ¨ ,FnF u do

3 f “ AF pDnq;
4 LMS “ ∆ pf,Dn,F , δq;
5 if L˚MS ą LMS then

6 L˚MS “ LMS;

7 f˚ “ AF pDnq;
8 Lpf˚q “ ∆

´

f˚,Dn,F , δ
nF

¯

;

basically one has to apply any probability inequality (Hoeffding [118] or Ben-

nett [35] or Berstein [38] or Chernoff [65] or Clopper-Pearson [67, 193] type

inequalities) together with the Bonferroni correction [45].

By applying this procedure we can state with probability p1´δq that [45, 118,

265]

ˇ

ˇ

ˇ
Lpfq ´ pLpfq

ˇ

ˇ

ˇ
ď

d

ln
`

|F | 2δ
˘

2n
, @f P F , (5.6)

which is a bound which shows slow rate of convergence O p1{nq.

In order to improve the rate of convergence we can use a Chernoff-type

bound [65], which is sharper when the empirical error is small and it can

exhibit a fast convergence rate O p1{nq

ˇ

ˇ

ˇ
Lpfq ´ pLpfq

ˇ

ˇ

ˇ
ď

d

pLpfq
3 ln

`

|F | 2δ
˘

n
`

3 ln
`

|F | 2δ
˘

n
, @f P F , (5.7)

where the bound holds with probability p1 ´ δq. Another option is to use

a Bennet-type bound [35, 175], which is sharper when the variance of the

empirical error is small and, as the Chernoff-type bound, it can exhibit a fast

convergence rate O p1{nq

ˇ

ˇ

ˇ
Lpfq ´ pLpfq

ˇ

ˇ

ˇ
ď

d

pV pfq
2 ln

`

|F | 3δ
˘

n
`

7 ln
`

|F | 3δ
˘

3pn´ 1q
, @f P F , (5.8)

where the bound holds with probability p1´ δq.

The state-of-art option is to use the Clopper-Pearson bound [67] recently ex-

tended [59, 193] in order to be applied to the case of r0, 1s-bounded losses. Let
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u be a random variable uniformly distributed over r0, 1s and let tu1, ¨ ¨ ¨ , unu

be n variables sampled i.i.d. from u. Then we can state that

Lpfq P

»

–

Q
”

δ
2|F | ;n

pLupfq, n´ npLupfq ` 1
ı

,

Q
”

1´ δ
2|F | ;n

pLupfq ` 1, n´ npLupfq
ı

fi

fl , @f P F , (5.9)

with probability p1´δq, where Qrp; v, ws is the p-th quantile of the Beta distri-

bution with shape parameters v and w and pLupfq “ 1
n

řn
i“1r`pfpxiq, yiq ě uis

(the Iverson bracket notation [121] is exploited).

The above mentioned bounds, even if tight and with good rates of convergence,

are not sound from a learning point of view. In fact they take into account

the whole set of functions inside F , while, in practical application, only the

function with small empirical error will be selected by the learning algorithm.

Therefore, just the functions in F with small empirical error should be taken

into account in the above mentioned bounds.

In order to address this issue we will show the approach of the Shell Bound [148,

149]. First we will present a naive version and then we will report the state-

of-the-art bounds.

We can start by defining a subset of the original space of functions F

Fppq “
"

f : f P F , Lpfq P
„

1

n
rnp´ 1s,

1

n
rnps

*

, (5.10)

which are called shells of F . Note that the shell may be empty, hence we

need to take care of this problem as we will see later. Moreover the number

of distinct shells are n, one for Lpfq P
“

0, 1
n

‰

, one for Lpfq P
“

1
n ,

2
n

‰

, and so on

until Lpfq P
“

n´1
n , 1

‰

.

Then if we choose a function in one of these shells we can say that with

probability p1´ δq

Lpfq ď pLpfq `

d

ln
`

|Fppq| 1δ
˘

2n
, @f P Fppq. (5.11)

Note that |Fppq| ě 1 since we selected a function in it. Nevertheless, since

µ is unknown, and then also Lpfq is unknown, we do not know what shell f

belongs to and then we have to take the worst case scenario of Lpfq and also

apply the Bonferroni Correction [45] over the number of shells (n). Then we

can state [149] that with probability p1´ δq

Lpfq ď max
pPr0,1s

$

&

%

p : p ď pLpfq `

d

ln
`

max p1, |Fppq|q nδ
˘

2n

,

.

-

, @f P F , (5.12)
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note that the maxp1, ¨q takes care of the fact that some shells may be empty.

Unfortunately the bound of Eq. (5.12) cannot be adopted in practice since

|Fppq| cannot be computed because Lpfq is unknown. With a rather technical

but simple proof it is possible to prove [149, 177] that with probability p1´ δq

|Fppq| ď
ˇ

ˇ

ˇ

pFpp, δq
ˇ

ˇ

ˇ
“ 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

$

&

%

f : f P F ,
ˇ

ˇ

ˇ

pLpfq ´ p
ˇ

ˇ

ˇ
ď

1

n
`

d

ln
`

8n
δ

˘

2n´ 1

,

.

-

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (5.13)

which means that the number of functions in a shell defined based on the

generalization error is upper bounded by the number of functions in another

shell defined based on the empirical error. By combining Eqns. (5.12) and

(5.13) we obtain that with probability p1´ δq

Lpfq ď max
pPr0,1s

$

’

’

&

’

’

%

p : p ď pLpfq `

g

f

f

e

ln
´

max
´

1,
ˇ

ˇ

ˇ

pF
`

p, δ2n
˘

ˇ

ˇ

ˇ

¯

2n
δ

¯

2n

,

/

/

.

/

/

-

, @f P F ,

(5.14)

which is the fully empirical Shell bound. Note that the bound of Eq. (5.14)

takes into account only the functions in F with small empirical error. Unfor-

tunatelly the bound of Eq. (5.14) shows slow rate of convergence.

In order to improve the rate of convergence we can use its Chernoff-type [65]

version, which is sharper when the empirical error is small and it can exhibit

a fast convergence rate O p1{nq

Lpfq ď max
pPr0,1s

$

’

’

’

’

&

’

’

’

’

%

p : p ď pLpfq `

g

f

f

f

e

pLpfq

3 ln

ˆ

2nmaxp1,| pFpp, δ2n q|q
δ

˙

n
(5.15)

`

3 ln

ˆ

2nmaxp1,| pFpp, δ2n q|q
δ

˙

n

,

/

/

.

/

/

-

, @f P F ,

where the bound holds with probability p1 ´ δq. Another option is to use

a Bennet-type bound [35, 175], which is sharper when the variance of the

empirical error is small and, as the Chernoff-type bound, it can exhibit a fast

convergence rate O p1{nq
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Lpfq ď max
pPr0,1s

$

’

’

’

’

&

’

’

’

’

%

p : p ď pLpfq `

g

f

f

f

e

pV pfq

2 ln

ˆ

3nmaxp1,| pFpp, δ2n q|q
δ

˙

n
(5.16)

`

7 ln

ˆ

3nmaxp1,| pFpp, δ2n q|q
δ

˙

3pn´ 1q

,

/

/

.

/

/

-

, @f P F ,

where the bound holds with probability p1´ δq.

The state-of-art option is to use the Clopper-Pearson bound [67] recently ex-

tended [59, 193] in order to be applied to the case of r0, 1s-bounded losses. Let

u be a random variable uniformly distributed over r0, 1s and let tu1, ¨ ¨ ¨ , unu

be n variables sampled i.i.d. from u. Then we can state that

Lpfqď max
pPr0,1s

$

&

%

p : pďQ

»

–

δ

2nmax
´

1,
ˇ

ˇ

ˇ

pF
`

p, δ2n
˘

ˇ

ˇ

ˇ

¯ ;npLupfq, n´npLupfq`1

fi

fl

,

.

-

,

@f P F , (5.17)

with probability p1´δq, where Qrp; v, ws is the p-th quantile of the Beta distri-

bution with shape parameters v and w and and pLupfq “ 1
n

řn
i“1r`pfpxiq, yiq ě

uis (the Iverson bracket notation [121] is exploited).

5.2 V. N. Vapnik and A. Chernovenkis Theory

Measuring the complexity of a set of rules is of crucial importance for a learn-

ing system, because it allows effective controlling of the learning process itself

and careful trade-off of possible under- and over-fitting effects in model infer-

ence. Starting from the 1960s, Information Theory [246] and SLT [266] opened

deep insights in this respect and clearly showed that näıve complexity mea-

sures, such as the number of parameters of a model or the number of rules

in a set, are not able to guide a learning process toward the selection of rules

with good generalization capabilities. Simple one-parameter rules exist that

can over-fit any dataset, while some infinite-parameter models can achieve

good generalization [265].

The two classical approaches mentioned earlier resulted in the definition of

advanced complexity measures, capable of better evaluating the actual hy-

pothesis space learning capacity. Kolmogorov, Chaitin, and Solomonoff inde-

pendently introduced the concept of Kolmogorov Complexity [184], a general
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and powerful notion of complexity that, unfortunately, is not computable.

Later, approximations of the Kolmogorov Complexity were proposed, such as

the Minimum Description Length [109], which has several practical applica-

tions although the connection with the Kolmogorov Complexity is not rigor-

ous. Following another path, i.e. taking inspiration from Popper’s ideas [214],

V. N. Vapnik and A. Chernovenkis developed a complete and computable the-

oretical framework for characterizing the learning process [68] and suggested

several measures of complexity, such as the Vapnik-Chervonenkis (VC) En-

tropy, the Growth Function and the VC-Dimension [62, 64, 188, 265, 279].

Original VC-Theory mainly deals with binary classification problems and not

the general SL framework. Since then several extensions have been proposed

in the literature. For example, Kearns and Schapire [132] introduced a gen-

eralization of the VC-Dimension to real-valued functions, which is known as

the Fat-Shattering Dimension [29].

Unfortunately, the VC-Theory has a global approach, because it takes into

account all the rules in the sets of rules, and it is data-independent, because

it does not take into account the actual distribution of the data available for

learning. As a consequence of targeting this worst-case learning scenario, the

VC-Dimension leads to very pessimistic generalization bounds. In order to deal

with one of these issues, effective data-dependent complexity measures have

been developed, which allow to take into account the actual distribution of the

data and produce tighter estimates of the complexity of the class based on the

actual learning problem. As an example, data-dependent versions of the VC-

Theory have been developed in [46, 240]. In recent years researchers have also

succeeded in developing local data-dependent complexity measures [26, 27, 40,

70, 140, 192, 198]. Local measures improve over global ones thanks to their

ability of taking into account only those rules of the rules class that will be

most likely chosen by the learning procedure, i.e. the models with small error.

In particular, a localized version of a complexity measure based on the VC-

Theory, called Local VC-Entropy, can be introduced [192]. The localization

of the VC-Entropy allows us to introduce the same improvements achieved

by Shell Bound into the VC-Theory as well, like, for example, the derivation

of refined generalization bounds with respect to their global counterparts.

Based on this new localized notion of complexity, it is also possible to derive

a generalization bound that does not take into account all the functions in

the set but only the ones with small error.
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In this section we will start by presenting first the original VC-Theory and

then we will present the novel Local VC-Theory.

In order to present the VC-theory let us define some preliminary quantities.

Let us consider only the case when Y “ t˘1u and that a t0, 1u-loss function

is exploited `pfpxq, yq “ ryfpxq ď 0s (the Iverson bracket notation [121] is

exploited). Then we define

F |Dn “
!

tf1, ¨ ¨ ¨ , fi, ¨ ¨ ¨ , fnu
f P F

)

, (5.18)

where fi “ fpxiq, and we recall the definition of VC-Entropy HnpFq, Annealed

VC-Entropy AnpFq and Growth Function GnpFq, along with their empirical

versions pHnpFq, pAnpFq and pGnpFq, respectively [265]

HnpFq “ EDn ln p|F |Dn |q , (5.19)

AnpFq “ ln pEDn |F |Dn |q , (5.20)

GnpFq “ max
Dn

ln p|F |Dn |q , (5.21)

pHnpFq “ ln p|F |Dn |q , (5.22)

pAnpFq “ pHnpFq, (5.23)

pGnpFq “ pHnpFq, (5.24)

where |¨| is the cardinality of a set. In practice, pHnpFq, pAnpFq and pGnpFq
count the number of distinct functions on the available data. Moreover by ap-

plying Jensen’s inequality [126] HnpFq ď AnpFq and AnpFq ď GnpFq because

the worst-case scenario is selected. Finally we can recall the definition of the

V. N. Vapnik and A. Chernovenkis dimension [265]

dVCpFq “ max
nPt0,1,2,¨¨¨ u

tn : GnpFq “ lnp2nqu. (5.25)

Basically the dVC is the maximum number of samples coming from µ that a

space of function F is able to perfectly classify, no matter the configuration

of the labels [265].

The Annealed VC-Entropy is the milestone of the Vapnik’s results [269] since

it allows to bound the generalization error given the empirical one (and vice

versa). Given a space of functions F and a dataset Dn it is possible to state

that

PDn

#

sup
fPF

«

Lpfq ´ pLpfq
a

Lpfq

ff

ě t

+

ď 4 exp

„ˆ

A2npFq
n

´
t2

4

˙

n



, (5.26)

PDn

#

sup
fPF

ˇ

ˇ

ˇ
Lpfq ´ pLpfq

ˇ

ˇ

ˇ
ě t

+

ď 4 exp

„ˆ

A2npFq
n

´ t2
˙

n



. (5.27)
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Unfortunately, this bound is not computable since A2npFq cannot be compute

because µ is unknown, but thanks to a recent result appeared in literature

it is possible to derive its computable version. In particular it is possible to

prove that the Annealed VC-Entropy is concentrated around its expected

value [46, 192] with probability at least p1´ δq

A2npFq ď 8pAnpFq ` 16 ln

ˆ

1

δ

˙

“ 8pHnpFq ` 16 ln

ˆ

1

δ

˙

. (5.28)

By combining Eq. (5.28) with the bounds of Eqns. (5.26) and (5.27) it is

possible to derive the fully empirical VC-based bounds [192]. Given a space of

functions F and a dataset Dn it is possible to state with probability p1´ 2δq

that

Lpfq ´ pLpfq
a

Lpfq
ď 6

d

pHnpFq ` 2 ln
`

4
δ

˘

n
, @f P F , (5.29)

ˇ

ˇ

ˇ
Lpfq ´ pLpfq

ˇ

ˇ

ˇ
ď 3

d

pHnpFq ` 2 ln
`

4
δ

˘

n
, @f P F . (5.30)

Note that the bound of Eq. (5.29) is fully empirical and can show fast rate

of convergence O p1{nq when pLpfq Ñ 0, while the bound of Eq. (5.30) always

shows slow convergence rate O
´

a

1{n

¯

.

Even if the bounds of Eqns. (5.29) and (5.30) are the only ones that can be

used in practice, the most known VC-Bounds are the ones based on the dVC.

In order to present them we need to recall the Saurer’s Lemmas [228, 243].

Given the dVCpFq then

GnpFq ď ln

»

–

dVCpFq
ÿ

i“0

ˆ

n

i

˙

fi

fl (5.31)

If n ă dVCpFq, then GnpFq “ ln p2nq. If n ě dVCpFq, then

GnpFq ď ln

«

ˆ

en

dVCpFq

˙dVCpFq
ff

. (5.32)

Moreover if dVCpFq ą e, then

GnpFq ď ln
´

ndVCpFq
¯

“ dVCpFq ln pnq . (5.33)

By combining Eq. (5.33) (for simplicity) with the bounds of Eqns. (5.26) and

(5.27) it is possible to state with probability p1´ δq that [265]
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Lpfq ´ pLpfq
a

Lpfq
ď 2

d

dVCpFq ln pnq ` ln
`

4
δ

˘

n
, @f P F , (5.34)

ˇ

ˇ

ˇ
Lpfq ´ pLpfq

ˇ

ˇ

ˇ
ď

d

dVCpFq ln pnq ` ln
`

4
δ

˘

n
, @f P F . (5.35)

The bounds of Eqns. (5.34) and (5.35) are the most well known results of

the VC-Theory. We report them just for historical reasons even if not fully

empirical.

The problem of the fully empirical bounds of Eqns. (5.29) and (5.30) is that

they take into account all the functions inside F . This is not reasonable since,

during the learning process, the functions in F with high empirical error will

be never selected by the learning algorithm, hence they should not be taken

into account when computing the complexity of F . In order to adress this

issue a Local VC-theory need to be exploited [192].

In order to present Local VC-theory we need some preliminary definitions and

results.

Let us define the localized version of the set of functions defined in Eq. (5.18)

by introducing a constraint on the error, controlled by a parameter r:

pF

pDn,rq

“

!

tf1, ¨ ¨ ¨ , fnu
f P F , pLnpfq ď r

)

, (5.36)

F

pDn,rq

“

!

tf1, ¨ ¨ ¨ , fnu
f P F , Lpfq ď r

)

, (5.37)

then, the empirical Local VC-Entropy, and its expected counterpart, can be

defined as:

xLHnpF , rq “ ln

ˆ
ˇ

ˇ

ˇ

ˇ

pF

pDn,rq

ˇ

ˇ

ˇ

ˇ

˙

, (5.38)

LHnpF , rq “ EDn ln

ˆˇ

ˇ

ˇ

ˇ

F

pDn,rq

ˇ

ˇ

ˇ

ˇ

˙

. (5.39)

As we will show in the next section, it is possible to derive a fully empirical

generalization bound on the true error of a classifier, based on these complex-

ities.

The first result, needed to derive the Local VC-Theory, allows to bound the

generalization error of a function based on a property of the entire class.

This is a rather technical and complex result which allows to normalize the

distance between the true and empirical error of the functions. More formally

the result states that it is possible to upper-bound the generalization of an

f P F as follows [192]
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Lpfq ď min
KPp1,8q

K

K ´ 1
pLpfq `

r

K
, f P F (5.40)

s.t. sup
αPr0,1s

α sup
fP

!

f
fPF, Lpfqď r

α

)

”

Lpfq ´ pLnpfq
ı

ď
r

K
, r ą 0.

Then by exploiting the results of Eqns. (5.29) and (5.30) we can state with

probability at least p1´ δq that [192]

sup
fPF

”

Lpfq ´ pLpfq
ı

ď 6

d

pHnpFq ` 2 ln
`

4
δ

˘

n
sup
fPF

a

Lpfq. (5.41)

Moreover with probability at least p1´ δq we can state that [192]

pLpfq ď Lpfq ` 3

d

pHnpFq ` 2 ln
`

4
δ

˘

n
, @f P F . (5.42)

By exploiting Eq. (5.42) it is possible to state that with probability at least p1´

δq the subset of the class of functions F characterized by small generalization

error is concentrated around the one with small empirical error [192]

!

f
fPF , Lpfqďr

)

(5.43)

Ď

$

’

’

&

’

’

%

f
fPF , pLpfqďr`3

g

f

f

e

pHn

´!

f
fPF , Lpfqďr

)¯

`2 ln
`

4
δ

˘

n

,

/

/

.

/

/

-

.

Finally by combining the results of Eqns. (5.40), (5.41), and (5.43) it is possible

to obtain the fully empirical Local VC-Theory based bound [192]

Lpfq ď min
KPp1,8q

K

K ´ 1
pLpfq `

r

K
, @f P F (5.44)

s.t. sup
αPr0,1s

6

d

rα
“

Tpr, αq ` 2 ln
`

9
δ

˘‰

n
ď

r

K
, r ą 0

Tpr, αq ď xLHn

¨

˝F , r
α
` 3

d

Tpr, αq ` 2 ln
`

9
δ

˘

n

˛

‚,

which holds with probability at least p1 ´ δq. Note that the bound of Eq.

(5.44), apart from being fully empirical, takes into account only the functions

with small empirical error contrarily to the bounds of Eqns. (5.29) and (5.30).
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5.3 Rademacher Complexity Theory

Measuring the performance of a learned model is a key topic in the SLT frame-

work [265], as it allows to get more insights about the behavior of the model

and to propose effective learning procedures [30, 63, 140, 147, 161, 184, 265].

While originally coping with asymptotic analysis, performance measurement

is approached through recent advances in finite sample analysis, which al-

low to deal with both theoretical and practical issues and can be effectively

exploited in real-world applications [4, 8, 98, 107, 209, 249].

The first data independent measures of complexity, i.e. the Growth Func-

tion and the VC-dimension, have been proposed [268], and subsequently re-

fined [208, 239]; however, data dependent alternatives, such as the Rademacher

Complexity (G)RC [30, 139, 194], have proved to address the limitations of

data independent measures. As GRC is a global measure which contemplates

the whole hypothesis space, improvements based on locality principles, namely

Local Rademacher Complexity (L)RC bounds [26, 27, 140], have been pro-

posed.

The superiority of LRC over the GRC based bounds is supported by a more

deep connection with the learning process itself and their rate of convergence.

While RC bounds are characterized by slow convergence [21, 24, 27, 61, 140,

166, 194, 265] O
´

a

1{n

¯

, LRC inequalities feature a fast rate [27] O p1{nq.

Nevertheless, some conditions must hold in order to enable fast rates in LRC,

for example with kernel classes [70, 136] the eigenvalues of the Gram matrix

must decrease exponentially (Theorem 5.2 [27]). Another example is when a

bounded loss function is adopted: in this case the hypothesis space must con-

tain a function with generalization error equal to zero (Lemma 6.6 [27]). These

conditions are seldom verified in practice (e.g., refer to the discussion follow-

ing Theorem 5.2[27]): for example, the first hypothesis does not hold when

Gaussian kernels are employed. Moreover, LRC bounds have also proved to

be loose [194], mostly because of the size of the constants which characterize

them [198]. Recently, because of the drawbacks of LRC bounds, some effort has

been spent in order to leverage some of the basic ideas, driving LRC, in GRC

bounds as well, targeted towards shrinking the hypothesis space and conse-

quently reduce the overall impact of the complexity term [10, 14, 197]. More-

over new tight GRC bounds are derived [196], which exploit the paramount

results pursued in [48, 156, 171, 257] in the framework of concentration in-

equalities: they show that it is possible to achieve a fast convergence rate

O p1{nq in the optimistic case, i.e. when the class is characterized by a com-
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plexity tending to zero and it contains a perfect classifier, analogously to [206].

Fast rates are then shown, for the first time, in the case of GRC, even though,

in the general scenario, the slow rate O
´

a

1{n

¯

is still valid [196].

Recent works in literature also showed that the Rademacher Complexity is an

effective statistical measure, which can be exploited to analyze the learning

performance of a model in learning frameworks other than the supervised

one. For example, RC has been exploited in the transductive [92] and semi-

supervised [130, 143, 226, 253, 281] learning frameworks. In the latter setting,

in particular, previous works showed how the tightness of RC bounds can

remarkably benefit from the exploitation of unlabeled samples [14, 34, 128,

196, 198].

In this section we will start by presenting first the GRC-Theory and then we

will present the novel LRC-Theory.

In order to present the GRC-Theory let us define some preliminary quantities.

GRC end LRC theories, contrarily to the VC-Theory, deal with the general SL

framework where a r0, 1s-bounded loss is exploited. Let us recall the definition

of Uniform Deviation (UD) pUnpFq and RC pRnpFq [10, 30]:

pUnpFq “ sup
fPF

”

Lpfq ´ pLpfq
ı

, (5.45)

pRnpFq “ Eσ sup
fPF

2

n

n
ÿ

i“1

σi`pfpxiq, yiq, (5.46)

where σ1, . . . , σn are independent uniform t˘1u-valued random Rademacher

variables. Note that, when Rademacher variables are allowed to assume only

a subset of possible 2n configurations, i.e.
řn
i“1 σi “ 0, another complexity

measure is obtained, called the Maximal Discrepancy (MD) pMnpFq [10, 30]:

pMnpFq “ sup
fPF

2

n

»

–

n
2
ÿ

i“1

`pfpxiq, yiq ´
n
ÿ

i“n2`1

`pfpxiq, yiq

fi

fl . (5.47)

Since pUnpFq, pRnpFq, and pMnpFq are random quantities, let us define their

deterministic counterparts: the Expected UD, the Expected RC, and the Ex-

pected Maximal Discrepancy

UnpFq “ EDnpUnpFq, (5.48)

RnpFq “ EDnpRnpFq, (5.49)

MnpFq “ EDn pMnpFq. (5.50)
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These quantities allow to obtain an effective upper bound of the unknown

Lpfq [25, 30, 139, 265] in terms of empirical quantities only. In particular, it

is possible to study the difference between Lpfq and pLpfq through the UD
pUnpFq:

Lpfq ď pLpfq ` pUnpFq, @f P F . (5.51)

However, pUnpFq depends on µ and is not computable as well. We can thus

upper bound the UD through RC (or, equivalently, MD):

PDn

!

pUnpFq ě pCnpFq ` t
)

(5.52)

ď PDn

!

pUnpFq ě CnpFq ` t1
)

` PDn

!

CnpFq ě pCnpFq ` t2
)

(5.53)

ď PDn

!

pUnpFq ě UnpFq ` t1
)

` PDn

!

CnpFq ě pCnpFq ` t2
)

,

t1 ` t2 “ t, (5.54)

where we exploited the following inequality [30]:

UnpFq ď CnpFq, (5.55)

and C can be either R or M. Since pUnpFq satisfies the hypothesis of McDiarmid

inequality [30, 181], it is possible to prove that, with probability p1´ δq:

Lpfq ď pLpfq ` UnpFq `

d

ln
`

1
δ

˘

2n
ď pLpfq ` CnpFq `

d

ln
`

1
δ

˘

2n
,

@f P F , (5.56)

which unfortunately shows a slow convergence rate O
´

a

1{n

¯

. Moreover, it

cannot be computed in practice, as it requires the knowledge of µ. By exploit-

ing the fact that pCnpFq satisfies the McDiarmid inequality [30, 181] too, it is

possible to provide a fully empirical bound that holds with probability p1´δq:

Lpfq ď pLpfq ` pCnpFq ` 3

d

ln
`

2
δ

˘

2n
, @f P F . (5.57)

The bound of Eq. (5.57) is characterized by the same slow convergence rate

O
´

a

1{n

¯

, and the constants lead to a looser bound than the one of Eq. (5.56).

However, both pRnpFq and pMnpFq can be easily computed. If pRnpFq is used,

2n maximization problems must be solved: approximations through Monte

Carlo approaches, rapidly converging to effective solutions, can be exploited
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in practice [25, 30]. Instead, if an MD measure pMnpFq is used, a single mini-

mization problem must be solved, although this process is usually replicated

in order to avoid “unlucky” complexity estimations [15]. The advantages and

disadvantages of using pRnpFq or pMnpFq are investigated in [17]: RC measures
pRnpFq are preferred as they satisfy the self bounding property [46, 196], and

consequently we will focus on RC.

As shown in [26, 194, 196], it is also possible to improve the constants in Eq.

(5.57) by removing the factor 3 in the best case scenarios (when pRnpFq Ñ 0).

Thanks to this result it is possible to obtain the explicit sharper version of

the bound of Eq. (5.57), that holds with probability p1´ δq:

Lpfq ď pLpfq ` pRnpFq `
2

n

d

n ln

ˆ

2

δ

˙

pRnpFq `
„

ln

ˆ

2

δ

˙2

`

d

ln
`

2
δ

˘

2n
`

2 ln
`

2
δ

˘

n
, @f P F . (5.58)

Unfortunately, despite its tightness, the previous bound still shows a slow

convergence rate O
´

a

1{n

¯

even in the best case scenario, namely when the

class of functions is small pRnpFq Ñ 0 and contains a function characterized

by pLpfq Ñ 0.

In order to improve the constants in the bound of Eq. (5.58), let us define the

following quantity:

φpaq “ p1` aq logp1` aq ´ a, a ą ´1, (5.59)

pφpaq “ 1´ exp

„

1`W´1

ˆ

a´ 1

e

˙

, φ
”

´pφpaq
ı

“ a, a P r0, 1s, (5.60)

qφpaq “ exp

„

1`W0

ˆ

a´ 1

e

˙

´ 1, φ
”

qφpaq
ı

“ a, a P r0,`8q, (5.61)

where W´1 and W0 are, respectively, two solutions of the Lambert W func-

tion [69]. It is now possible to show that the bound of Eq. (5.58) can be

further improved by giving a closed form expression [194], i.e. by formulating

an implicit bound which requires a numerical procedure to be solved

Lpfq ď pLpfq ` r˚ `

d

ln
`

2
δ

˘

2n
, @f P F ,

r˚ “ arg max
rPr0,1s

r s.t. r “ pRnpFq ` rpφ
«

2 ln
`

2
δ

˘

nr

ff

, (5.62)

which holds with probability p1´ δq, but still shows a slow convergence rate.
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In order to derive and improved version of the bounds of Eqns. (5.58) and

(5.62) we need to define another quantity, together with its empirical coun-

terpart

VpFq “ sup
fPF

Epx,yq`pfpxq, yq, (5.63)

pVnpFq “ sup
fPF

1

n

n
ÿ

i“1

`pfpxiq, yiq. (5.64)

From a statistical point of view, VpFq is an upper bound of the variance of

`pfpxq, yq and is not computable: we can only derive its empirical estimate
pVnpFq. From a cognitive point of view, VpFq measures the ability of our

hypothesis space H of “non-learning” µ: in other words, VpFq evaluates the

worst case scenario which the procedure could have to cope with during the

learning process.

At this point, since pUnpFq satisfies the hypothesis of the Bousquet inequal-

ity [48] and pRnpFq is a self bounding function [46, 196], it is possible to improve

the explicit bound of Eq. (5.58), by stating that with probability p1´ δq the

following bound holds [196]

Lpfq ď pLpfq ` pRnpFq ` 5

d

ln
`

2
δ

˘

n
pRnpFq ` 2

d

ln
`

2
δ

˘

n
pVnpFq

` 4

g

f

f

e

ln
`

2
δ

˘

n

d

ln
`

2
δ

˘

n
pRnpFq `

11 ln
`

2
δ

˘

n
(5.65)

ď pLpfq ` 3pRnpFq ` pVnpFq `
24 ln

`

2
δ

˘

n
. (5.66)

The bound of Eq. (5.65) contains only empirical quantities. By analyzing

the bound of Eq. (5.65), it is worth noting that the convergence rate can

vary between a slow O
´

a

1{n

¯

and a fast O p1{nq value. As the complexity

terms differ from zero, the slow convergence prevails; on the contrary, the

fast rate is achievable when all the complexity terms tend to zero, as it can

be more easily noted in the formulation of Eq. (5.66). Thus, the previous

bound is characterized (though in a non-typical optimistic scenario) by fast

convergence: this is the first time for GRC measures, since they only showed

slow convergence so far [26, 30, 194]. A similar result can be derived when

the distribution of the data depends on n. Let us consider Y P t˘1u and

P tY “ `1|Xu “ 1{n, and let also H include models that assign labels `1

to every sample: in this scenario, we have that pVnpFq « 1{n and pRnpFq Ñ 0,
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thus we derive fast rates as well. One can also resort to approaches allowing to

reduce the complexity of the space: for example, by reserving part of the data

for building a data dependent hypothesis space, as described in [9, 12, 14],

or by adding some hypothesis, like the low noise condition [24, 248]. These

results show that the complexity of the class of function can be sharpened

without resorting to LRC measures.

Despite being appealing in terms of convergence rate, the constants included

in the bound of Eq. (5.65) are not optimal: we have to give up the closed form

formulation in order to circumvent this issue.

Analogously to the bound of Eq. (5.62), for the bound of Eq. (5.58) the implicit

form with optimal constants of the bounds of Eq. (5.65), which holds with

probability p1´ δq, is the following one [196]

Lpfq ď pLpfq ` s˚1 , @f P F , (5.67)

s˚1“ arg max
s1Pr0,1s

s1

s.t. s1 “ r˚1`
´

2r˚1`
pVnpFq`s1

¯

qφ

¨

˝

ln
`

2
δ

˘

n
´

2r˚1`
pVnpFq`s1

¯

˛

‚,

r˚1“ arg max
r1Pr0,1s

r1

s.t. r1 “ pRnpFq ` r1pφ
˜

2 ln
`

2
δ

˘

nr1

¸

.

The problem that still affects the fully empirical bounds of Eqns. (5.58), (5.62),

(5.65), and (5.67) is that they take into account all the functions inside F .

This is not reasonable since, during the learning process, the functions in F
with high empirical error will be never selected by the learning algorithm,

hence they should not be taken into account when computing the complexity

of F by applying the localization principle. In order to address this issue the

LRC-Theory need to be exploited [27, 198].

In order to present Local LRC-Theory we need some preliminary definitions

and results.

First, we switch from the space of functions F to the space of loss functions.

Given a space of functions F with its associated loss function `pfpxq, yq, the

space of loss functions L is defined as

L “
!

`pfpxq, yq
f P F

)

. (5.68)

Let us also consider the corresponding star-shaped space of functions [27, 198].

Given the space of loss functions L, its star-shaped version is
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Ls “
!

α`
 α P r0, 1s, ` P L

)

. (5.69)

Then, the generalization error and the empirical error can be rewritten in

terms of the space of loss functions

Lpfq ” Lp`q, pLpfq ” pLp`q. (5.70)

Moreover we can define, respectively, the expected square error and the em-

pirical square error:

Lp`2q “ Ex,y r`pfpxq, yqs2 , (5.71)

pLp`2q “
1

n

n
ÿ

i“1

r` pf pxiq , yiqs
2
. (5.72)

Since we do not know in advance which f P F will be chosen during the

learning phase, in order to estimate Lp`q we have to study the behavior of the

difference between the generalization error and the empirical error. Given L,

the UD of the loss pUnpLq and square loss pU2
npLq are

pUnpLq “ sup
`PL

”

Lp`q ´ pLp`q
ı

, (5.73)

pU2
npLq “ sup

`PL

”

pLp`2q ´ Lp`2q
ı

, (5.74)

while their deterministic counterparts are:

UnpLq “ EDnpUnpLq, (5.75)

U2
npLq “ EDnpU

2
npLq. (5.76)

The UD is not computable, but we can upper bound its value through some

computable quantities. One possibility is to use the RC. The RC of the loss

and of the square loss are:

pRnpLq “ Eσ sup
`PL

2

n

n
ÿ

i“1

σi` pf pxiq , yiq , (5.77)

pR2
npLq “ Eσ sup

`PL

2

n

n
ÿ

i“1

σi r` pf pxiq , yiqs
2
. (5.78)

Their deterministic counterparts are:

RnpLq “ EDnpRnpLq, (5.79)

R2
npLq “ EDnpR

2
npLq. (5.80)
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Finally, we will also make use of the notion of sub-root function [27, 198]. A

function is a sub-root function if and only if: (I) ψprq is positive, (II) ψprq is

non-decreasing, and (III) ψprq{
?
r is non-increasing with r ą 0. The properties

of the sub-root functions are reported in many works [27, 198].

In this first part, we propose a proof of the LRC bound on the generalization

error of a model [27, 140], which is simplified with respect to the original proof

in literature and allows us also to obtain optimal constants [198]. Later we

will report the state-of-the-art bound.

In order to improve the readability of this part, an outline of the main steps

of the the presentation is reported. As a first step, we will show that it is

possible to bound the generalization error of a function chosen in F , through

an assumption over the Expected UD of a normalized and slightly enlarged

version of F . As a second step, we will show how to relate the Expected UD

and the Expected RC through the use of a sub-root function. The fixed point

of this sub-root function is used to bound the generalization error of a function

chosen in F . As a third step, we will show that, instead of using any sub-root

function, we can directly use the Expected RC of a local space of functions,

where functions therein are the ones with low expected square error. As a

fourth step, we will substitute the non-computable expected quantities men-

tioned above with their empirical counterpart, which can be computed from

the data. Then, we finally derive the main result, which is a fully empirical

LRC bound on the generalization error of a function chosen in the original

hypothesis space F .

The following result is needed for normalizing the original hypothesis space:

this allows to bound the generalization error of a function chosen in F . Let

us consider the normalized loss space Lr:

Lr “
"

r

Lp`2q _ r
`
 ` P L

*

, (5.81)

and let us suppose that, @K ą 1:

pUnpLrq ď
r

K
. (5.82)

Then, @f P F , the following inequality holds [198]

Lpfq ď max

"ˆ

K

K ´ 1
pLpfq

˙

,
´

pLpfq `
r

K

¯

*

ď
K

K ´ 1
pLpfq `

r

K
. (5.83)

The next step shows that the normalized hypothesis space defined in Eq.

(5.81) is a subset of a new star-shaped space. Let
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Lsr “
!

α`
 α P r0, 1s, ` P L, Lrpα`q2s ď r

)

, (5.84)

then [198]

Lr Ď Lsr. (5.85)

If we consider a sub-root function that upper-bounds the Expected RC of

the hypothesis space defined in Eq. (5.84), we can exploit the bound of Eq.

(5.83) for bounding the generalization error of a function chosen in the original

hypothesis space F . Let us consider a sub-root function ψnprq, with fixed point

r˚n, and suppose that, @r ą r˚n

Rn pLsrq ď ψnprq. (5.86)

Then, @f P F and @K ą 1 we have that [198], with probability p1´ δq:

Lpfq ďmax

$

&

%

ˆ

K

K ´ 1
pLpfq

˙

,

¨

˝
pLpfq `Kr˚n ` 2

d

ln
`

1
δ

˘

2n

˛

‚

,

.

-

. (5.87)

The previous result holds for any sub-root function which satisfies Eq. (5.86).

The next lemma shows that the RC, defined in Eq. (5.86), is indeed a sub-root

function, which means that the inequality of Eq. (5.86) is indeed an equality.

Let us consider Rn pLsrq, namely the Expected RC computed on Lsr. Then

ψnprq “ Rn pLsrq (5.88)

is a sub-root function [27, 198].

The next two results allow to substitute the non-computable expected quan-

tities, Lsr and Rn, with their empirical counterparts, which can be computed

from the data. Let us suppose that

r ě Rn pLsrq , (5.89)

and let us define

pLsr “

$

&

%

α`
 α P r0, 1s, ` P L, pLrpα`q2s ď

¨

˝3r `

d

ln
`

1
δ

˘

2n

˛

‚

,

.

-

. (5.90)

Then, @`rs P Lsr, the following inequality holds [198] with probability p1´ δq:

Lsr “ pLsr. (5.91)
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Moreover let us consider two sub-root functions and their fixed points:

ψnprq “ Rn pLsrq , ψnpr
˚
nq “ r˚n (5.92)

pψnprq “ pRn

´

pLsr
¯

`

c

2x

n
, ψnppr

˚
nq “ pr˚n. (5.93)

The following inequalities hold [198] with probability p1´ 2δq:

ψnprq ď pψnprq, r˚n ď pr˚n. (5.94)

Finally, we derive the main result of this part, namely a fully empirical LRC

bound on the generalization error of a function, chosen in the original hypoth-

esis space F . Let us consider a space of functions F and the fixed point pr˚n of

the following sub-root function:

pψnprq “ pRn

´

pLsr
¯

`

d

2 ln
`

1
δ

˘

n
, (5.95)

where

pLsr “

$

&

%

α`
α P r0, 1s, ` P L, pLp`2q ď

1

α2

¨

˝3r `

d

ln
`

1
δ

˘

2n

˛

‚

,

.

-

. (5.96)

Then, @f P F and @K ą 1 the following inequality holds [198] with probability

p1´ 3δq:

Lpfq ď max

$

&

%

ˆ

K

K ´ 1
pLpfq

˙

,

¨

˝
pLpfq `Kpr˚n ` 2

d

ln
`

1
δ

˘

2n

˛

‚

,

.

-

. (5.97)

The bound of Eq. 5.97 is mainly based on the exploitation of McDiarmid’s

inequalities [181]. In order to improve the tightness of the bound of Eq. (5.97),

more refined concentration inequalities [46–48], based on the milestone results

of Talagrand [156], need to be exploited. This approach improves the technique

proposed by [27] and obtains optimal constants for the bounds [198] by giving

up the closed form solution [198].

Then, we exploit the more refined concentration [46–48] inequalities in the

results of Eqns. (5.91) and (5.94). By combining these different pieces, the

desired bound can be derived.

The first step is to obtain the counterpart of the bound of Eq. (5.87). Let us

consider a sub-root function ψnprq and its fixed point r˚n, and suppose that

@r ą r˚n:
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Rn pLsrq ď ψnprq. (5.98)

Let us define rU as the largest solution, with respect to r, of the following

equation:

a

rr˚n `
”

2
a

rr˚n ` r
ı

qφ

#

ln
`

1
δ

˘

rn p2
?
rr˚n ` rqs

+

“
r

K
. (5.99)

Then @f P F and @K ą 1 we have that [198], with probability p1´ δq:

Lpfq ď max

"ˆ

K

K ´ 1
pLpfq

˙

,

ˆ

pLpfq `
rU

K

˙*

. (5.100)

The next two results are the counterparts of Eqns. (5.91) and (5.94). Let us

suppose that:

r ě Rn pLsrq . (5.101)

Let us define pLsr as:

pLsr “
#

α`
 α P r0, 1s, ` P L, pLrpα`q2s ď 3r ` 5rqφ

˜

ln
`

1
δ

˘

n5r

¸+

. (5.102)

Then [198] @`rs P Lsr and with probability p1´ δq:

Lsr Ď pLsr. (5.103)

Moreover let us consider two sub-root functions and their fixed points:

ψnprq “ Rn pLsrq , ψnpr
˚
nq “ r˚n (5.104)

pψnprq “ pRnp pLsrq ` rpφ
˜

2 ln
`

1
δ

˘

nr

¸

, pψnppr
˚
nq “ pr˚n. (5.105)

Then, the following inequalities hold [198] with probability p1´ 2δq:

ψnprq ď pψnprq, r˚n ď pr˚n. (5.106)

Finally, we can derive the fully empirical and tighter version of the bound

of Eq. (5.97) LRC state of the art bound [198]. Let us consider a space of

functions F and the fixed point pr˚n of the following sub-root function:

pψnprq “ pRn

´

pLsr
¯

` rpφ

˜

2 ln
`

1
δ

˘

nr

¸

, (5.107)
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where

pLsr “
#

α`
αPr0, 1s, ` P L, pLrpα`q2s ď 3r ` 5rqφ

˜

ln
`

1
δ

˘

n5r

¸

.

+

(5.108)

Let us define rU as the largest solution of the following identity:

a

rpr˚n `
”

2
a

rpr˚n ` r
ı

qφ

#

ln
`

1
δ

˘

“

n
`

2
a

rpr˚n ` r
˘‰

+

“
r

K
. (5.109)

Then, @f P F and @K ą 1, the following inequality holds [198] with proba-

bility p1´ 3δq:

Lpfq ď max

"ˆ

K

K ´ 1
pLpfq

˙

,

ˆ

pLpfq `
rU

K

˙*

. (5.110)

Note that both the bounds of Eqns. (5.97) and (5.110) are in implicit form.

However, the bound of Eq. (5.110) requires to look for a fixed point and to

find the largest solution of an equation; the bound of Eq. (5.97), instead, only

requires to find a fixed point.
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Compression Bound

Compression bound is probably the simplest yet theoretically grounded ap-

proach to MS and EE. The Compression bound [96, 147, 162] relies on a

simple idea: if an algorithm is able to compress the data provided to learn

a rule then the algorithm will generalize. This idea has a long history in the

literature from the seminal groundbreaking work about the Kolmogorov Com-

plexity [184] to the Minimum Description Length principle [109]. The fact that

compressing is related to learning is nowadays a well known and firm principle

which guides many researchers in the design of new learning schema.

The compression bound applies to deterministic algorithms and both deter-

ministic and probabilistic rules. Just the i.i.d. hypothesis over the sampled

data is necessary. Mainstream learning algorithms do not optimize data com-

pression metric, so the compression bound is seldom used. Nonetheless, there

do exist some reasonably competitive learning algorithms (e.g. Support Vec-

tor Machines [71, 265]) for which the sample compression bound produces

significant results.

In order to present the compression bound more formally let us introduce

the notation. Let X and Y be, respectively, an input and an output space.

We consider a set of labeled independent and identically distributed (i.i.d.)

data Dn : tz1, ¨ ¨ ¨ , znu of size n, where ziPt1,¨¨¨ ,nu “ pxi, yiq, sampled from an

unknown distribution µ where x P X , y P Y and z P Z “ X ˆ Y. A learning

algorithm A maps Dn into a rule R : A pDnq, which maps elements in X to

elements in Y. In particular, A allows designing R P R and defining the set

of rules R, that is generally unknown.

We suppose here that the choice of the final rule R does not depend on the

entire dataset Dn but just on a subset of it D1n1 Ă Dn. In other words we
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assume that the algorithm is able to intrinsically compress the data. Formally

we assume that R “ A pDnq “ A pD1n1q.
The accuracy of R in representing the hidden relationship µ is measured with

reference to a r0, 1s-bounded loss function ` : R ˆ Z Ñ r0, 1s. Consequently,

the quantity of interest is defined as the generalization error, namely the error

that a model will perform on new data generated by µ and previously unseen

L pRq “ Ez` pR, zq . (6.1)

L pRq cannot be computed since µ is unknown and, consequently, must be

estimated. The empirical error [10, 26, 30, 266], its empirical estimator, can

be computed

pL pR,Dnq “
1

n

ÿ

zPDn
` pR, zq , (6.2)

together with the empirical variance

pV pR,Dnq “
1

npn´ 1q

ÿ

z1PDn

ÿ

z2PDn
r`pR, z1q ´ `pR, z2qs2. (6.3)

Deriving the Compression bound is rather simple because we just need to

count all the possible choices that the algorithm A made in order to define

R “ A pDnq based on just D1n1 . Then, since, by definition, some data DnzD1n1
have not been exploited by the algorithm during the training phase we can use

them as an hold out set. Therefore, analogously to the resampling method,

we can use the i.i.d. data in DnzD1n1 together with the union bound [45] (the

Bonferroni correction) over all the choices made by the algorithm in order to

bound the generalization error.

Hence let us count how many choices have been made by the algorithm. Since

the R “ A pDnq depends on D1n1 Ă Dn,

1. the algorithm has chosen the cardinality of D1n1 namely n1 P t0, 1, ¨ ¨ ¨ , nu;

2. the algorithm has chosen a subset of samples of cardinality n1 in Dn.

But how many choices have the algorithm had for selecting a subset a

cardinality n1 in Dn? The answer is rather simple and it is
`

n
n1

˘

.

Then we can state that the algorithm A made pn` 1q
`

n
n1

˘

choices.

At this point we have to recall that the samples in Dn are sampled i.i.d. from

µ. Then since R “ A pDnq “ A pD1n1q we have that the errors that R makes on

DnzD1n1 are i.i.d. and then we can use the Hoeffding Inequality [118] together

with the Bonferroni over the whole choices made by A in order to state that:
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PDnzD1n1

!

LpA pDnqq ě pLpA pDnq,DnzD1n1q ` t
)

ď pn` 1q

ˆ

n

n1

˙

e´2pn´n1qt2 , (6.4)

PDnzD1n1

!
ˇ

ˇ

ˇ
LpA pDnqq ´ pLpA pDnq,DnzD1n1q

ˇ

ˇ

ˇ
ě t

)

ď 2pn` 1q

ˆ

n

n1

˙

e´2pn´n1qt2 , (6.5)

or, alternatively, that with probability p1´ δq

LpA pDnqq

ď pLpA pDnq,DnzD1n1q `
d

ln
`

pn` 1q
`

n
n1

˘˘

2pn´ n1q
`

d

ln
`

1
δ

˘

2pn´ n1q
, (6.6)

ˇ

ˇ

ˇ
LpA pDnqq ´ pLpA pDnq,DnzD1n1q

ˇ

ˇ

ˇ

ď

d

ln
`

pn` 1q
`

n
n1

˘˘

2pn´ n1q
`

d

ln
`

2
δ

˘

2pn´ n1q
. (6.7)

Note that from these bounds it is rather clear that they lead to meaningful

and useful results just when n1 is rather small, otherwise
`

n
n1

˘

becomes soon

huge. This is the principal limitation of the compression bound: the need for

huge rates of compression.

Obviously it is possible to retrieve the Chernoff-type [65] version of the bound

of Eq. (6.7) which is sharper when the empirical error is small and it can

exhibit a fast convergence rate O p1{n´ n1q
ˇ

ˇ

ˇ
LpA pDnqq ´ pLpA pDnq,DnzD1n1q

ˇ

ˇ

ˇ
(6.8)

ď

d

pLpA pDnq,DnzD1n1q
3 ln

`

2
δ pn` 1q

`

n
n1

˘˘

n´ n1
`

3 ln
`

2
δ pn` 1q

`

n
n1

˘˘

n´ n1
,

where the bound holds with probability p1´ δq.

It is also possible to derive a Bennet-type bound [35, 175] which is sharper

when the variance of the empirical error is small and, as the Chernoff-type

bound, it can exhibit a fast convergence rate O p1{n´ n1q
ˇ

ˇ

ˇ
LpA pDnqq ´ pLpA pDnq,DnzD1n1q

ˇ

ˇ

ˇ
(6.9)

ď

d

pV pA pDnq,DnzD1n1q
2 ln

`

3
δ pn` 1q

`

n
n1

˘˘

n´ n1
`

7 ln
`

3
δ pn` 1q

`

n
n1

˘˘

3pn´ n1 ´ 1q
, (6.10)

where the bound holds with probability p1´ δq.
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The state-of-art option is to use the Clopper-Pearson bound [67] extended [59,

193] in order to be applied to the case of r0, 1s-bounded losses. Let u be a

random variable uniformly distributed over r0, 1s and let tu1, ¨ ¨ ¨ , unu be n

variables sampled i.i.d. from u. Then we can state that

LpA pDnqq (6.11)

P

»

—

—

—

—

–

Q

«

δ

2pn`1qpnn1q
;
pn´ n1qpLupA pDnq,DnzD1n1q,
pn´n1q´pn´n1qpLupA pDnq,DnzD1n1q`1

ff

,

Q

«

1´ δ

2pn`1qpnn1q
;
pn´n1qpLupA pDnq,DnzD1n1q`1,

pn´n1q´pn´n1qpLupA pDnq,DnzD1n1q

ff

fi

ffi

ffi

ffi

ffi

fl

,

with probability p1 ´ δq and where Qrp; v, ws is the p-th quantile of the Beta

distribution with shape parameters v and w and pLupA pDnq,DnzD1n1q “
1

n´n1

ř

zPDnzD1n1
r`pA pDnqq ě uis (each ui is associated with a different

z P DnzD1n1 and the the Iverson bracket notation [121] is exploited).

Finally note that all the compression bounds are fully empirical bounds and

can be used both for MS and EE purposes by exploiting the approach de-

scribed in the preliminaries of this book [147]. In fact all the Compression-

based bounds have the following form:

PDnzD1n
 

LpA pDnqq ď ∆pDn,DnzD1n1 ,A , n1, δq
(

ě 1´ δ. (6.12)

Then if we want to choose A ˚ P tA1, ¨ ¨ ¨ ,AnA u, namely perform the MS

phase, and estimate the generalization performance of A ˚pDnq, namely per-

form the EE phase, we have to follow the procedure summarized in Algorithm

3. Note that the generalization of the final model is bounded by

LpA ˚pDnqq ď∆
ˆ

Dn,DnzD1n1pA ˚q,A ˚, n1pA ˚q,
δ

nA

˙

,

@A ˚ P tA1, ¨ ¨ ¨ ,AnA u, (6.13)

with probability p1´ δq, since we have applied the Bonferroni correction [45]

over the nA choices for the algorithm. Note that D1n1 and n1 depend on the

particular A .
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Algorithm 3: Compression bound: MS and EE Strategy.

Input: tA1, ¨ ¨ ¨ ,AnA u, Dn, and δ

Output: Optimal Model A ˚
pDnq and its estimated generalization error

LpA ˚
pDnqq

1 L˚MS “ `8;

2 for A P tA1, ¨ ¨ ¨ ,AnA u do

3 Compute D1n1 and n1 based on A pDnq;
4 LMS “ ∆pDn,DnzD1n1 ,A , n1, δq;

5 if L˚MS ą LMS then

6 L˚MS “ LMS;

7 A ˚
pDnq “ A pDnq;

8 LpA ˚
pDnqq “ ∆

´

Dn,DnzD1n1 ,A , n1, δ
nA

¯

;





7

Algorithmic Stability Theory

The notion of Stability [49, 186, 212] allows to answer a fundamental ques-

tion in learning theory: which are the properties that a learning algorithm A

should fulfill in order to achieve good generalization performance? Stability

answers this question in a very intuitive way: if A selects similar models,

even if the training data are (slightly) modified, then we can be confident

that the learning algorithm is stable. In other words, if Stability shows that

A does not excessively fit the noise that afflicts the available data, there-

fore A is able to achieve good generalization. Note that, using this approach,

there is no need to aprioristically fix a set of models to be explored by the

learning algorithm, which represents a novelty with respect to the complexity-

based approaches [265]. The groundbreaking idea of Stability, in fact, allowed

to overcome some computational and theoretical issues of the complexity-

based approaches, where it is necessary to fix a class of functions F in a

data-independent way, and to measure its complexity for obtaining valid gen-

eralization bounds1 [10, 26, 30, 240, 266].

However, several successful learning algorithms, like, for example, the k-

Nearest Neighbors (k-NN) [135], are developed from (eventually heuristic)

training procedures or strategies, without explicitly defining a fixed hypothe-

sis space. The k-NN idea is to group similar objects into the same class, but

the hypothesis is only defined as soon as the data become available: no set

of functions, from which we pick up the best one fitting the available data, is

defined [135].

1 This is true not only in a frequentist setting, but in the Bayesian learning frame-

work as well, where a prior distribution of models must be specified before seeing

the data [117, 178, 207].
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When the hypothesis space cannot be defined in advance, the complexity-bases

approaches fails and it becomes mandatory to resort to resampling techniques.

Some attempts have also been made for extending the complexity-based ap-

proaches to data-dependent hypothesis spaces, but no practical and general

results have been obtained so far [52, 240, 277].

Stability works in the same hypothesis under which the resampling methods

work, apart from the fact that it handles just deterministic algorithms and

rules. Recently extensions to probabilistic rules and algorithms have been pro-

posed [93] but results are quite preliminary and overcomplicated with respect

to the scope of this book and to other tools which better handle these kinds

of algorithms and rules like Differential Privacy. Stability, as we will see later,

unfortunately still brings to loose bounds or almost data and algorithm in-

dependent bounds and these limitations do not allow its adoption in more

contexts.

At this point we can start to describe the Stability framework in a more

formal way. Let X and Y be, respectively, an input and an output space.

We consider a set of labeled independent and identically distributed (i.i.d.)

data Dn : tz1, ¨ ¨ ¨ , znu of size n, where ziPt1,¨¨¨ ,nu “ pxi, yiq, sampled from an

unknown distribution µ where x P X , y P Y and z P Z “ X ˆ Y. A learning

algorithm A , characterized by a configuration of its hyperparameters h that

must be tuned, it maps Dn into a function f : AhpDnq, which maps elements

in X to elements in Y. In particular, Ah allows designing f P Fh and defining

the hypothesis space Fh, that is generally unknown (and depends on h). We

assume that Ah satisfies some minor properties detailed in [49]: namely, we

consider only deterministic algorithms which produce deterministic rules and

that are symmetric with respect to Dn (then they do not depend on the order

of the elements in the training set); moreover, all the functions are measurable

and all the sets are countable. We also define two modified training sets:

Dzin : tz1, ¨ ¨ ¨ , zi´1, zi`1, ¨ ¨ ¨ , znu, where the i-th element is removed Di
n :

tz1, ¨ ¨ ¨ , zi´1, z
1
i, zi`1, ¨ ¨ ¨ , znu and Di

n, where the i-th element is replaced and

where z1i is an i.i.d. pattern, sampled from µ. The accuracy of AhpDnq in

representing the hidden relationship µ is measured with reference to a r0, 1s-

bounded loss function ` : Fh ˆ Z Ñ r0, 1s. Consequently, the quantity of

interest is defined as the generalization error, namely the error that a model

will perform on new data generated by µ and previously unseen

L pAhpDnqq “ Ez` pAhpDnq, zq . (7.1)
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L pAhpDnqq is a random variable that depends on Dn, that unfortunately

cannot be computed since µ is unknown and, consequently, must be estimated.

Two of its most exploited estimators are the empirical error [10, 26, 30, 266]

pLemp pAhpDnq,Dnq “
1

n

ÿ

zPDn
` pAhpDnq, zq , (7.2)

and the Leave-One-Out (LOO) error [100, 157]

pLloo pAhpDnq,Dnq “
1

n

ÿ

zPDn
` pAhpDnzzq, zq . (7.3)

With the complexity-based approaches, an upper bound of L pAhpDnqq is de-

rived by studying the supremum of the uniform deviation of the generalization

error from the empirical error of Eq. (7.2) or, alternatively, from the LOO error

of Eq. (7.3)

sup
fPFh

ˇ

ˇ

ˇ
L pAhpDnqq ´ pLemp pAhpDnq,Dnq

ˇ

ˇ

ˇ
, (7.4)

sup
fPFh

ˇ

ˇ

ˇ
L pAhpDnqq ´ pLloo pAhpDnq,Dnq

ˇ

ˇ

ˇ
. (7.5)

When the complexity-based approaches are adopted, it is hypothesized that

the class of functions Fh is defined in a data-independent fashion and, then,

is known. When dealing with Stability, we suppose that Fh is not aprioristi-

cally designed, thus studying the uniform deviation is not possible since Fh is

unknown. The deviation pD pAhpDnq,Dnq of the generalization error from the

empirical or the LOO errors is analyzed, instead

pDemp pAhpDnq,Dnq “
ˇ

ˇ

ˇ
L pAhpDnqq ´ pLemp pAhpDnq,Dnq

ˇ

ˇ

ˇ
, (7.6)

pDloo pAhpDnq,Dnq “
ˇ

ˇ

ˇ
L pAhpDnqq ´ pLloo pAhpDnq,Dnq

ˇ

ˇ

ˇ
. (7.7)

Note that the deterministic counterpart of the above mentioned sets can be

defined as

D2
emp pAh, nq “ EDn pD

2
emp pAhpDnq,Dnq , (7.8)

D2
loo pAh, nq “ EDn pD

2
loo pAhpDnq,Dnq . (7.9)

In order to study pD pAhpDnq,Dnq, we can adopt different approaches. The

first one consists in using the hypothesis Stability H pAh, nq

Hemp pAh, nq “ EDn,z1i
ˇ

ˇ` pAhpDnq, ziq ´ `
`

AhpDi
nq, zi

˘
ˇ

ˇ ď βemp, (7.10)

Hloo pAh, nq “ EDn,z
ˇ

ˇ

ˇ
` pAhpDnq, zq ´ `

´

AhpDzin q, z
¯
ˇ

ˇ

ˇ
ď βloo. (7.11)
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Lemma 3 in [49] proves that:

D2
emp pAh, nq ď

1

2n
` 3Hemp pAh, nq , (7.12)

D2
loo pAh, nq ď

1

2n
` 3Hloo pAh, nq . (7.13)

By exploiting the Chebyshev inequality [54], Eqns. (7.6), (7.10) and (7.12) (or,

analogously, Eqns. (7.7), (7.11) and (7.13)) we obtain that, with probability

p1´ δq:

L pAhpDnqq ď pLemp pAhpDnq,Dnq `
c

1

2nδ
`

3βemp

δ
, (7.14)

L pAhpDnqq ď pLloo pAhpDnq,Dnq `
c

1

2nδ
`

3βloo
δ

, (7.15)

which are the polynomial bounds previously derived in [49] and based on

hypothesis stabilty2.

Another approach, targeted towards deriving a Stability bound on the gener-

alization error, consists in exploiting the uniform Stability UpAhq:

U i pAh, nq “
ˇ

ˇ` pAhpDnq, ¨q ´ `
`

AhpDi
nq, ¨

˘
ˇ

ˇ

8
ď βi, (7.16)

U zi pAh, nq “
ˇ

ˇ

ˇ
` pAhpDnq, ¨q ´ `

´

AhpDzin q, ¨
¯
ˇ

ˇ

ˇ

8
ď βzi. (7.17)

Note that:

Hemp pAH, nq ď U i pAH, nq , (7.18)

Hloo pAH, nq ď U zi pAH, nq . (7.19)

By exploiting the McDiarmid’s Inequality [181] it is possible to derive the

following exponential bounds [49], that hold with probability p1´ δq:

L pAhpDnqq ďpLemp pAhpDnq,Dnq ` 2βi `
`

4nβi ` 1
˘

d

ln
`

1
δ

˘

2n
, (7.20)

L pAhpDnqq ďpLloo pAhpDnq,Dnq ` βzi `
´

4nβzi ` 1
¯

d

ln
`

1
δ

˘

2n
. (7.21)

Although the bounds are exponential, Stability must decrease with n in or-

der to obtain a non-trivial result. Unfortunately, this is seldom the case: for

2 For the sake of precision, note that the bounds slightly differ from the results

proposed in [49]: as a matter of fact, as also underlined in [186], the original work

on Stability [49] contains one error, which motivates the exploitation of the two

notions of hypothesis Stability of Eqns. (7.12) and (7.13).
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example, when a hard t0, 1u-loss function is exploited in binary classifica-

tion to count the number of misclassifications, it is possible to prove that

βi “ βzi “ 1 for many well-known and widely used algorithms [75, 76] (such

as k-Local Rules [224] or Support Vector Machines [71]). Moreover, in those

cases where non-trivial results can be derived (e.g., in bounded Support Vector

Regression [81]), strong conditions on µ must hold, which are rarely satisfied

in practice. Finally, also note that the previous results are all algorithmic-

dependent, but they are not data-dependent: as remarked in the introduction,

this represents a drawback in practical applications.

In order to cope with these blind spots of Stability it is necessary to derive a

fully empirical and data-dependent result.

Let us consider the LOO error: we will devote a paragraph later to the mo-

tivations of this choice. We have to start by making an assumption on the

learning algorithm A . In particular, we suppose that the hypothesis Stability

does not increase with the cardinality of the training set:

Dloo pAh, nq ď Dloo

ˆ

Ah,

?
n

2

˙

. (7.22)

We point out that Property (7.22) is a desirable requirement for any learning

algorithm: in fact, the impact on the learning procedure of removing sam-

ples from Dn should decrease, on average, as n grows. Alternatively, we can

hypothesize that:

Hloo pAh, nq ď Hloo

ˆ

Ah,

?
n

2

˙

. (7.23)

Note that:

Hloo pAH, nq ď Hloo

ˆ

AH,

?
n

2

˙

Ñ Dloo pAH, nq ď Dloo

ˆ

AH,

?
n

2

˙

. (7.24)

Note also that Property (7.22) (or, alternatively, Property (7.23)) has already

been studied by many researchers in the past. In particular, these properties

are related to the concept of consistency [75, 251]. However, connections can

also be identified with the trend of the learning curves of an algorithm [78, 187,

204, 205]. Moreover, such quantities are strictly linked to the concept of Smart

Rule [75]. The purpose of these works is to prove that an algorithm performs

better as the cardinality of the learning set increases: then, the more data

we have, the more concentrated the empirical or the LOO errors should be
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around the generalization error. It is worth underlining that, in many of the

above-referenced works, Property (7.22) (or, alternatively, Property (7.23))

is proved to be satisfied by many well known algorithms (Support Vector

Machines, Kernelized Regularized Least Squares, k-Local Rules with k ą 1,

etc.)

In the following, we start by considering and using the assumption of Eq.

(7.22). In this case, we exploit the Chebyshev inequality [54] and derive that,

with probability p1´ δq:

pDloopAhpDnq,Dnq ď
c

D2
loo pAh, nq

δ
ď

g

f

f

e

D2
loo

´

Ah,
?
n
2

¯

δ
. (7.25)

By exploiting Eq. (7.13), we have that:

D2
loo

ˆ

Ah,

?
n

2

˙

ď
1
?
n
` 3Hloo

ˆ

Ah,

?
n

2

˙

. (7.26)

We focus now on Hloo

´

Ah,
?
n
2

¯

. For this purpose, let us introduce the fol-

lowing empirical quantity:

pHloo

´

Ah

´

D?
n
2

¯

,D?
n
2

¯

(7.27)

“
8

n
?
n

?
n
2
ÿ

k“1

?
n
2
ÿ

j“1

?
n
2
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

`
´

A
´

D̆k?
n
2

¯

, z̆kj

¯

´ `

ˆ

A

ˆ

´

D̆k?
n
2

¯zi
˙

, z̆kj

˙
ˇ

ˇ

ˇ

ˇ

,

where:

D̆k?
n
2

:
!

zpk´1q
?
n`1, ¨ ¨ ¨ , zpk´1q

?
n`

?
n
2

)

, k P

"

1, ¨ ¨ ¨ ,

?
n

2

*

, (7.28)

z̆kj : z
pk´1q

?
n`

?
n
2 `j

, k P

"

1, ¨ ¨ ¨ ,

?
n

2

*

. (7.29)

Note that the quantity of Eq. (7.27) is the empirical unbiased estimator of

Hloo

´

Ah,
?
n
2

¯

and then:

Hloo

ˆ

Ah,

?
n

2

˙

“ ED?
n
2

pHloo

´

Ah

´

D?
n
2

¯

,D?
n
2

¯

. (7.30)

It is worth noting that, when dealing with pHloo

´

Ah

´

D?
n
2

¯

,D?
n
2

¯

, all the

samples zi are i.i.d. and sampled from µ. Thus
ˇ

ˇ

ˇ

ˇ

`
´

A
´

D̆k?
n
2

¯

, z̆kj

¯

´ `

ˆ

A

ˆ

´

D̆k?
n
2

¯zi
˙

, z̆kj

˙
ˇ

ˇ

ˇ

ˇ

P r0, 1s, @i, j, k (7.31)
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will be i.i.d., and we can bound in probability the difference between the

Hloo

´

Ah,
?
n
2

¯

and the pHloo

´

Ah

´

D?
n
2

¯

,D?
n
2

¯

by exploiting, for example,

the Hoeffding inequality [118]:

P
„

Hloo

ˆ

Ah,

?
n

2

˙

´ pHloo

´

Ah

´

D?
n
2

¯

,D?
n
2

¯

ą t



ď e´
?
nt2 . (7.32)

Then, with probability p1´ δq:

Hloo

ˆ

Ah,

?
n

2

˙

ď pHloo

´

Ah

´

D?
n
2

¯

,D?
n
2

¯

`

d

ln
`

1
δ

˘

?
n
. (7.33)

Combining Eqns. (7.25), (7.26) and (7.33) we get that, with probability p1´δq:

L pAhpDnqq ďpLloo pAhpDnq,Dnq (7.34)

`

g

f

f

f

e

2

δ

»

–

1
?
n
` 3

»

–
pHloo

´

Ah

´

D?
n
2

¯

,D?
n
2

¯

`

d

ln
`

2
δ

˘

?
n

fi

fl

fi

fl.

When exploiting Property (7.23), the proof is analogous. We can make use of

Eqns. (7.13) and the Chebyshev inequality [54], and state that, with proba-

bility p1´ δq:

pDloopApDn,Hq,Dnq ď
d

1

δ

„

1

2n
` 3Hloo

ˆ

AH,

?
n

2

˙

. (7.35)

Then, with probability p1´ δq:

L pAhpDnqq ďpLloo pAhpDnq,Dnq (7.36)

`

g

f

f

f

e

2

δ

»

–

1

2n
` 3

¨

˝
pHloo

´

Ah

´

D?
n
2

¯

,D?
n
2

¯

`

d

ln
`

2
δ

˘

?
n

˛

‚

fi

fl.

Let us roll back to the choice of using the LOO error in place of the empirical

error for the previous proofs. One can imagine that the empirical estimator

can be exploited as well, e.g., by defining two properties analogous to the ones

of Eqns. (7.22) and (7.23):

Demp pAh, nq ď Demp

ˆ

Ah,

?
n

2

˙

, (7.37)

Hemp pAh, nq ď Hemp

ˆ

Ah,

?
n

2

˙

. (7.38)
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Consequently, we can study the empirical estimator of Hemp

´

Ah,
?
n
2

¯

. For

this purpose we have to introduce the following empirical quantity:

pHemp

´

Ah

´

D?
n
2

¯

,D?
n
2

¯

“
4

m

?
n
2
ÿ

k“1

?
n
2
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

`
´

A
´

D̆k?
n
2

¯

, z̆ki

¯

´ `

ˆ

A

ˆ

´

D̆k?
n
2

¯i
˙

, z̆ki

˙
ˇ

ˇ

ˇ

ˇ

, (7.39)

where:

D̆k?
n
2

:
!

zpk´1q
?
n`1, ¨ ¨ ¨ , zpk´1q

?
n`

?
n
2

)

, k P

"

1, ¨ ¨ ¨ ,

?
n

2

*

, (7.40)

z̆ki : zpk´1q
?
n`i, k P

"

1, ¨ ¨ ¨ ,

?
n

2

*

, (7.41)

´

D̆k?
n
2

¯i

:
!

zpk´1q
?
n`1, ¨ ¨ ¨ , z̆

1k
i , ¨ ¨ ¨ , zpk´1q

?
n`

?
n
2

)

,

k P

"

1, ¨ ¨ ¨ ,

?
n

2

*

, (7.42)

z̆1ki : z
pk´1q

?
n`

?
n
2 `i

, k P

"

1, ¨ ¨ ¨ ,

?
n

2

*

. (7.43)

Unfortunately, although all the patterns zi are i.i.d. and sampled from µ, the

terms in the summations of Eq. (7.39)
ˇ

ˇ

ˇ

ˇ

`
´

A
´

D̆k?
n
2

¯

, z̆ki

¯

´ `

ˆ

A

ˆ

´

D̆k?
n
2

¯i
˙

, z̆ki

˙
ˇ

ˇ

ˇ

ˇ

P r0, 1s, @i, k (7.44)

are not i.i.d. Thus, a bound, analogous to the one for the LOO error, cannot

be derived.

Note that it does not make much sense to exploit sharper bounds in Eq. (7.33)

since the sharpness of the fully empirical bounds of Eqns. (7.34) and (7.34)

mainly depends on the result of Eq. (7.15) for which faster bounds do not

exist. Recently [174] some attempts have been made to obtain a Bernstein-

type bound [38] but the results do not take into account the empirical variance

of the error, but the empirical variance of the data distribution which is seldom

small.

Finally note that the fully empirical bounds of Eqns. (7.34) and (7.36) can

be used both for MS and EE purposes by exploiting the approach described

in the preliminaries of this book [195, 199]. In fact all the Compression-based

bounds have the following form:

PDn tLpAhpDnqq ď ∆pDn,Ah, δqu ě 1´ δ. (7.45)
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Algorithm 4: Algorithmic Stability: MS and EE Strategy.

Input: AH, Dn, and δ

Output: Optimal Model A ˚
h pDnq and its estimated generalization error

LpA ˚
h pDnqq

1 L˚MS “ `8;

2 for Ah P AH do

3 LMS “ ∆pDn,Ah, δq;

4 if L˚MS ą LMS then

5 L˚MS “ LMS;

6 A ˚
h pDnq “ AhpDnq;

7 LpA ˚
h pDnqq “ ∆

´

Dn,Ah,
δ

|AH|

¯

;

Then if we want to choose A ˚
h P AH “ tAh : A P A, h P HA u, namely per-

form the MS phase, and estimate the generalization performance of A ˚
h pDnq,

namely perform the EE phase, we have to follow the procedure summarized

in Algorithm 4. Note that the generalization of the final model is bounded by

PDn

"

LpA ˚
h pDnqq ď ∆

ˆ

Dn,A ˚
h ,

δ

|AH|

˙*

ě 1´ δ, @A ˚
h P AH (7.46)

with probability p1´ δq, since we have applied the Bonferroni correction [45]

over the |AH| choices for the algorithm and hyperparameters configurations.
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PAC-Bayes Theory

It is well known that combining the output of several rules results in much

better performance than using any one of them alone. In fact many state-of-

the-art algorithms search for a weighted combination of simpler rules [104]:

Bagging [50, 51], Boosting [229, 230] and Bayesian approaches [102] or even

Kernel methods [265] and Neural Networks [39]. The major open prob-

lem in this scenario is how to weight the different rules in order to ob-

tain good performance [37, 55, 159, 160, 190, 207], how these performances

can be assessed [55, 79, 103, 104, 146, 150, 152, 153, 159, 160, 163, 176,

178, 179, 242, 260, 264], and how this theoretical framework can be ex-

ploited for deriving new learning approaches or for applying it in other con-

texts [22, 23, 32, 105, 178, 185, 217, 227, 231–236, 241]. The Probably Approx-

imately Correct Bayes (PAC-Bayes) approach is one of the sharpest analysis

frameworks in this context, since it can provide tight bounds on the risk of the

Gibbs Classifier (GC), also called Randomised (or probabilistic) Classifier, and

the Bayes Classifier (BC), also called Weighted Majority Vote Classifier [104].

The GC chooses a classifier in the set of classifiers according to the posterior

distribution each time a new sample has to be classified [160] while the BC

takes the decision based on the expected value of the GC over the posterior

distribution [104]. In particular, in the PAC-Bayes framework a prior distri-

bution over the different classifiers must be defined before seeing the data,

then, based on the available data, a posterior distribution can be chosen, and

the risk of the associate GC and BC is computed, based on the empirical risk

and the divergence between the prior and posterior distributions [176].

Note that GC and BC are classifiers and not rules since the PAC-Bayes Theory

deals mainly with classifiers, in particular binary classifiers, and most of the
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results are not yet extended to the general SL framework. For this reason,

with the PAC-Bayes Theory, we will only deal with the binary classification

framework.

In the conventional PAC-Bayes framework, a posterior distribution that mini-

mizes the divergence between prior and posterior distributions must be chosen,

since this divergence forms part of the bound. This choice is critical: in some

cases this choice results to be too generic and not suited for the particular

problem [160], other times some data are kept apart from the learning pro-

cess and exploited to derive a generally good prior [147, 207]. Consequently in

the first case the divergence term in the PAC-Bayes analysis can typically be

large, while in the second case the bound tends to be loose since some data

are wasted in order to design the prior. In order to address this issue in [55]

a localized PAC-Bayes analysis is proposed, which uses a Boltzmann prior

distribution defined in terms of the distribution that has generated the data.

Note that, since the prior depends on the distribution, the PAC-Bayes analy-

sis is still valid because the prior is defined before observing the data [55]. By

tuning the prior to the distribution, Catoni was able to remove the divergence

term from the bound, hence significantly reducing the complexity penalty.

More recently this approach has been extended in [160, 193] by deriving some

new sharper bounds and by combining these results with the recent develop-

ment in the analysis of the GC reported in [104]. Note that other approaches

for removing the divergence exist. One approach is to design a prior and a

posterior such that they are aligned [104, 105, 227]. The second one is to de-

sign a so called expectation-prior which does not require any separate set of

data to build a prior which will be probably close to the posterior [207]. Every

approach has its own strengths and weaknesses but the approach of Catoni

seems to be the most promising one [55, 160] even if using Boltzmann distri-

butions in some contexts can be seen as a limitation [160]. In fact, keeping

the divergence term allowed many researchers to design new MS methods and

learning algorithms [3, 103, 241].

As it should be clear by the general description reported above, the PAC-

Bayes Theory deals with deterministic algorithms which choose a distribution

over a set of known deterministic rules. Moreover data must be sampled i.i.d.

Finally, even if the PAC-Bayes Theory is one of the sharpest analysis for prob-

abilistic rules, a lot of research is still ongoing for the definition of appropriate

prior and posterior distributions and for sharpening the already quite effective

generalization bounds.
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In order to present the state-of-the-art, we first recall some common defi-

nitions [49, 104, 265]. Let us consider a set of labeled samples defined as

Dn “ tpx1, y1q, ¨ ¨ ¨ , pxn, ynqu “ tz1, ¨ ¨ ¨ , znu drawn i.i.d. according to an un-

known probability distribution µ over the cartesian product between the input

space X and the output space Y “ t´1,`1u, defined as Z “ X ˆ Y. Let us

consider a function f in a set of possible ones F , where f : X Ñ Y “ r´1,`1s.

The error of f in approximating µ is measured with reference to some r0, 1s-

bounded loss function ` : F ˆ Z Ñ r0, 1s. Then the risk of f can be defined

as

L`pfq “ Ez t`pf, zqu , (8.1)

together with its variance

V `pfq “ Eztp`pf, zq ´ Ez`pf, zqq2u. (8.2)

Since µ is unknown L`pfq and V `pfq cannot be computed, but we can compute

its empirical estimators, the empirical error

pL`pfq “
1

n

n
ÿ

i“1

`pf, ziq, (8.3)

and the empirical variance

pV `pfq “
1

n´ 1

n
ÿ

i“1

´

`pf, ziq ´ pL`pfq
¯2

. (8.4)

Since in this part we will deal with binary classification problems, we will often

make use of the Hard loss function `Hpf, zq “ ryfpxq ď 0s, but also the Linear

loss function `Spf, zq “ 1{2p1´ yfpxqq will be exploited. Note that, if fB P FB
is a binary classifier fB : X Ñ t˘1u, we have that `SpfB , zq “ `HpfB , zq.

The GC draws an f P F , according to a probability distribution Q over F ,

each time a label for an input x P X is required. For the GC, that we will call

GQ, we can define its risk together with its empirical counterpart [160]

L`pGQq “ Ef„QtL
`pfqu, pL`pGQq “ Ef„QtpL

`pfqu. (8.5)

Analogously it is possible to define the average expected variance and the

average empirical variance

V `pGQq “ Ef„QV
`pfq, pV `pGQq “ Ef„Q

pV `pfq. (8.6)

The BC [104], instead, can be defined as
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BQpxq “ sign rEf„Q tfpxqus . (8.7)

Consequently, it is possible to define the generalization error of the BC [104,

160] as

L`pBQq “ Ez t`pBQ, zqu . (8.8)

Let us define the Expected Disagreement (ED) [104] of f P F with respect to

Q, together with its empirical counterpart computed over s samples:

dQ “ 1{2´ 1{2Ex
!

rEf„Q tfpxqus
2
)

, (8.9)

pdsQ “ 1{2´ 1{2s

s
ÿ

i“1

rEf„Q tfpxiqus
2
. (8.10)

The Expected Joint Error (EJE) [104] of f P F with respect to Q, together

with its empirical counterpart, is:

e`Q “ Ez,f1„Q,f2„Q t`pf1, zq`pf2, zqu , (8.11)

pe`Q “ Ef1„Q,f2„Q

#

1{n

n
ÿ

i“1

r`pf1, ziq`pf2, ziqs

+

. (8.12)

Note that in [104] it is proved that dQ ď 2
`?
eQ ´ eQ

˘

. We denote with

KLrQ||P s the Kullback-Leibler Divergence (KLD) [262] between P and Q,

while klrq||ps and klr
q1
q2 ||

p1
p2 s are, respectively, the KLD for the Binomial and

Trinomial distributions [103]:

klrq||ps “ q ln

„

q

p



` r1´ qs ln

„

1´ q

1´ p



, (8.13)

kl

«

q1

q2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p1

p2

ff

“q1 ln

„

q1
p1



` q2 ln

„

q2
p2



` r1´ q1 ´ q2s ln

„

1´ q1 ´ q2
1´ p1 ´ p2



.

Thanks to the Pinsker’s Inequality [262], we can state that |q ´ p| ď
a

1{2klpq||pq. Finally, let us recall the definition of the last fundamental quan-

tity in the PAC-Bayes framework [103, 172]:

ξn “
n
ÿ

k“0

ˆ

n

k

˙ˆ

k

n

˙k ˆ

1´
k

n

˙n´k

P r
?
n, 2
?
ns, (8.14)

which will appear in many of the subsequent results.

A lot of work has been done in order to bound the risk of the BC and GC.

The first one bounds the risk of the GC in terms of its empirical estimate.
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For any probability distribution P over F , chosen before seeing Dn, @Q we

have1 [231, 241]

P

$

&

%

kl
”

pL`pGQq||L
`pGQq

ı

ě

KL` ln
”

ξn
δ

ı

n

,

.

-

ď δ. (8.15)

Consequently, with probability at least p1´ δq, we have that:

L`pGQqP
“

inf I`0pδ,P,Q, nq, sup I`0pδ,P,Q, nq
‰

, (8.16)

where

I`0pδ,P,Q, nq“

$

&

%

r : rPr0, 1s, kl
”

pL`pGQq||r
ı

ď

KL` ln
”

ξn
δ

ı

n

,

.

-

. (8.17)

Recently new versions of the PAC-Bayes bounds of Eq. (8.15) based on the

Rényi Divergence [33] have been proposed. These bounds, even if tighter in

some cases, do not improve the convergence rate but only the constants in-

volved in the bound and they are quite complicate and out of the scope of

this book.

The second result bounds the risk of the BC and it is commonly known as

the C-bound. Unfortunately, this bound involves only quantities that cannot

be computed from the data.

Given the risk of the GC, the ED and EJE of Q over F , we have that [104, 146]

L`pBQq ď 1´
r1´ 2L`pGQqs

2

1´ 2dQ
“ 1´

r1´ p2e`Q ` dQqs
2

1´ 2dQ
. (8.18)

This bound holds only for ` “ `S . Moreover, L`pBQq ď 2L`pGQq which holds

for both ` “ `S and ` “ `H .

By exploiting the bounds of Eqns. (8.15) and (8.18) it is possible to obtain

the third milestone result, which is an empirical bound over the risk of the

BC.

For any probability distribution P over F , chosen before seeing Dn, with

probability at least p1´ δq and @Q, we have that:

L`pBQq ď 2 min
“

1{2, sup I`0pδ,P,Q, nq
‰

. (8.19)

This bound holds for both ` “ `S and ` “ `H .

1 In the following we will sometimes indicate KL “ KLrQ||Ps for brevity.
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The next result bounds the ED in terms of its empirical counterparts and its

proof is very similar to the one of the bound of Eq. (8.15).

For any probability distribution P over F , chosen before seeing Dn, with

probability at least p1´ δq and @Q, we have that [104]

dQ P rinf I1pδ,P,Q, nq, sup I1pδ,P,Q, nqs , (8.20)

where

I1pδ,P,Q, nq“

$

&

%

r : rP

„

0,
1

2



, kl
”

pdnQ||r
ı

ď

2KL` ln
”

ξn
δ

ı

n

,

.

-

. (8.21)

Based on the bounds of Eqns. (8.15), (8.18), and (8.20), it is possible to prove

the fourth milestone result, which bounds the risk of the BC.

For any probability distribution P over F , chosen before seeing Dn, with

probability at least p1´ 2δq and @Q, we have that [104]

L`pBQq ď 1´

`

1´ 2 min
“

1{2, sup I`0pδ,P,Q, nq
‰˘2

1´ 2 inf I1pδ,P,Q, nq
. (8.22)

This bound holds only for ` “ `S .

Finally, the fifth milestone result, which is also the most recent one in PAC

analysis, can be reported.

For any probability distribution P over F , chosen before seeing Dn, with

probability at least p1´ δq and @Q, we have that [104, 278]

L`pBQq ď sup
pe,dqPI`2pδ,P,Q,nq

1´
p1´minr1, p2e` dqsq

2

1´ 2d
, (8.23)

where

I`2pδ,P,Q, nq (8.24)

“

$

&

%

pe, dq : e, d P r0, 1s, dď2
`?
e´ e

˘

, kl

«

pdnQ
pe`SQ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d

e

ff

ď

2KL` ln
”

ξn`n
δ

ı

n

,

.

-

.

This bound holds only for ` “ `S .

Note that all the previous bounds do not take into account the variance of

the error. Recently [260], a new bound has been derived, which takes the vari-

ance into account, and in many natural situations their PAC-Bayes-Empirical-

Bernstein inequality can be much tighter than the bound of Eq. (8.15).
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For any probability distribution P over F , chosen before seeing Dn, with

probability at least p1´ 2δq, @Q, and for any c1, c2 ą 1, we have that [260]

L`pGQq ď pL`pGQq ` p1` c1q

d

pe´ 2qν3
“

KL` ln
“

2ν1
δ

‰‰

n
, (8.25)

when
a

rKLrQ||Ps ` lnr2ν1{δss{rpe´ 2qν3s ď
?
n, otherwise

L`pGQq ď pL`pGQq ` 2
KL` ln

“

2ν1
δ

‰

n
, (8.26)

where

ν1“

S

1

lnpc1q
ln

˜d

pe´ 2qn

4 ln
`

1
δ

˘

¸W

, (8.27)

ν2“

S

1

lnpc2q
ln

˜

1

2

d

n´ 1

ln
`

1
δ

˘ ` 1`
1

2

¸W

, (8.28)

ν3“pV `pGQq ` p1` c2q

d

pV `pGQq
“

KL` ln
“

ν2
δ

‰‰

2pn´ 1q
`

2c2
“

KL` ln
“

ν2
δ

‰‰

n´ 1
. (8.29)

Note that all the bounds involve the KLD between P and Q and for this reason

the choice of P and Q in the PAC-Bayes Theory can be critical. From one side

Q should fit our observations, but from another side Q should be close to P, in

order to minimize the KLD term. The milestone result of [55], later extended

by [160], proposes to use a Boltzmann prior distribution P which depends

on the data generating distribution µ. In particular, let us suppose that the

density function associated to the prior P is:

ppfq “ cpe
´γL`pfq, (8.30)

where γ P r0,8q and 1{cp “
ş

F e
´γL`pfqdf is a normalization term. Moreover,

let us suppose that the density function associated to the posterior Q is:

qpfq “ cqe
´γ pL`pfq, (8.31)

where 1{cq “
ş

F e
´γ pL`pfqdf is a normalization term. Hence, we give more

importance to functions with small risk.

Note that, in order to sample f P F according to this particular Q, there

are two main cases. In the first case the cardinality of F is finite and reason-

ably small to compute exactly ppfq. In the second case F contains too many

functions (or even an infinite number), and consequently we have to resort
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to a subsampling of F via Monte Carlo search in order to make the problem

treatable and then compute ppfq. Note that this last approach may produce

numerical problems when γ is large.

Based on the previous definitions the following result has been derived.

Given P defined in Eq. (8.30) and Q defined in Eq. (8.31), with probability at

least p1´ δq, we have that [160]

KLrQ||Ps ď KL1pγ, δ, nq “
γ2

2n
` γ

g

f

f

e

2 ln
”

ξn
δ

ı

n
. (8.32)

Consequently, with probability at least p1´ 2δq, we have that [160]

kl
”

pL`pGQq||L
`pGQq

ı

ď

KL1pγ, δ, nq ` ln
”

ξn
δ

ı

n
. (8.33)

The loss ` that we use for P and Q can be different from the one that we use

for pL`pGQq and L`pGQq.

The bound of Eq. (8.32) has been recently further improved [193] by exploiting

the Clopper-Pearson bound [67].

Given P defined in Eq. (8.30) and Q defined in Eq. (8.31), with probability at

least p1´ 2δq, we have that [193]

KLrQ||Ps ď KL2pγ, δ, nq

“
γ2

4n
´γQ

”

δ;
n

2
,
n

2
` 1

ı

`
γ

2
` γ

g

f

f

e

ln
”

ξn
δ

ı

2n
`

γ2

16n2
´
γQ

“

δ; n2 ,
n
2 ` 1

‰

2n
`

γ

4n

ď KL1pγ, 2δ, nq, (8.34)

where Qrt; v, ws is the t-th quantile of the Beta distribution with shape pa-

rameters v and w. Moreover, with probability at least p1´ 3δq, we have that:

kl
”

pL`pGQq||L
`pGQq

ı

ď
KL2pγ, δ, nq ` ln

”

ξn
δ

ı

n
. (8.35)

The loss ` that we use for P and Q can be different from the one that we

use for pL`pGQq and L`pGQq. If the losses used to define P, Q, pL`pGQq and

L`pGQq are the same, the bound of Eq. (8.35) can be further improved and,

with probability at least p1´ 2δq, we have that:

kl
”

pL`pGQq||L
`pGQq

ı

(8.36)

ď
γ
ˇ

ˇ

ˇ
L`pGQq ´ pL`pGQq

ˇ

ˇ

ˇ

n
`

´γQ
“

δ; n2 ,
n
2 ` 1

‰

`
γ
2 ` ln

”

ξn
δ

ı

n
.
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Note that the main result of the bound of Eq. (8.34) is that KL2pγ, δ, nq ď

KL1pγ, 2δ, nq. The results of the bound of Eq. (8.34) can be plugged in any of

the bounds of Eqns. (8.15), (8.23), (8.25), and (8.20). In this way we obtain

the sets I`0pδ,P,Q, nq, I1pδ,P,Q,mq and I`2pδ,P,Q, nq, when P and Q defined

in this section according to [55, 160], are adopted. Then, the bounds on the

risk of the GC and BC can be derived.

Finally, we would like to underline that using two different kinds of losses

(one for P and Q and another one for pL`pGQq and L`pGQq) can be, in some

cases, very useful. In fact, when one has to build a classifier with few high

dimensional data [11], using `S during the learning phase, namely choosing

the prior, instead of `H that we would like to actually minimize, can led to

better generalization performances since we can better control our class of

functions [30, 49, 225, 265].

A straightforward consequence of the bounds of Eqns. (8.34) and (8.19) is the

following bound, which improves all the results reported in [160].

Given P defined in Eq. (8.30) and Q defined in Eq. (8.31), with probability at

least p1´ pδq, we have that:

L`pGQqP
“

inf I`3pδ,P,Q, nq, sup I`3pδ,P,Q, nq
‰

, (8.37)

L`pBQq ď 2 min
“

1{2, sup I`3pδ,P,Q, nq
‰

. (8.38)

Note that if the loss exploited in P and Q is the same as the one used in

L`pGQq and pL`pGQq, then p “ 2 and

I`3pδ,Q,Dnq “ tr : r P r0, 1s, (8.39)

kl
”

pL`pGQq||r
ı

ď
γ
ˇ

ˇ

ˇ
r ´ pL`pGQq

ˇ

ˇ

ˇ

n
`
´γQ

“

δ; n2 ,
n
2 ` 1

‰

`
γ
2 ` ln

”

ξn
δ

ı

n

,

.

-

.

Otherwise p “ 3 and:

I`3pδ,Q,Dnq (8.40)

“

$

&

%

r : r P r0, 1s, kl
”

pL`pGQq||r
ı

ď
KL2pγ, δ, nq ` ln

”

ξn
δ

ı

n

,

.

-

.

Analogously, it is possible to plug the result of the bound of (8.34) into the

bound of Eq. (8.25) in order to improve this last result in the cases when the

bound of Eq. (8.25) is sharper with respect to the bound of (8.34).

Finally note that all the above mentioned bounds that take into account only

empirical quantities can be used both for MS and EE purposes by exploiting
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Algorithm 5: PAC-Bayes Theory: MS and EE Strategy for the Gibbs

Classifier (for the Bayes Classifier it is analogous).

Input: tpP,Fq1, ¨ ¨ ¨ , pP,Fqncu, Dn, and δ

Output: Optimal Model Q˚ and the estimated generalization error of the

associated Gibbs Classifier LpGQ˚q

1 L˚MS “ `8;

2 for pP˚,F˚q P tpP,Fq1, ¨ ¨ ¨ , pP,Fqncu do
3 Choose Q with the preferred method;

4 LMS “ ∆pDn,Q,P, δq;
5 if L˚MS ą LMS then

6 L˚MS “ LMS;

7 Q˚ “ Q;

8 LpGQ˚q “ ∆
´

Dn,Q,P, δ
nc

¯

;

the approach described in the preliminaries of this book [104, 202, 203]. In

fact all the PAC-Bayes based bounds have the following form:

PDn tLpGQq ď ∆pDn,Q,P, δqu ě 1´ δ, (8.41)

PDn tLpBQq ď ∆pDn,Q,P, δqu ě 1´ δ. (8.42)

Then if we want to choose pP˚,F˚q P tpP,Fq1, ¨ ¨ ¨ , pP,Fqncu and whatever

Q˚ we want, namely perform the MS phase, and estimate the generalization

performance ofGQ˚ andBQ˚ , namely perform the EE phase, we have to follow

the procedure summarized in Algorithm 5. Note that the generalization of the

final model is bounded by

PDn

"

LpGQ˚qď∆

ˆ

Dn,Q˚,P˚,
δ

nc

˙*

ě 1´δ,

@pP˚,F˚q P tpP,Fq1, ¨¨¨, pP,Fqncu, @Q˚, (8.43)

PDn

"

LpBQ˚qď∆

ˆ

Dn,Q˚,P˚,
δ

nc

˙*

ě 1´δ,

@pP˚,F˚q P tpP,Fq1, ¨¨¨, pP,Fqncu, @Q˚. (8.44)

with probability p1´ δq, since we have applied the Bonferroni correction [45]

over the nc choices for the Prior and space of functions. Note that ∆ depends

on the particular A .
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Differential Privacy Theory

The problem of learning from data while preserving the privacy of individual

observations has a long history and spans over multiple disciplines [87, 108,

270]. One way to preserve privacy is to corrupt the learning procedure with

noise without destroying the information that we want to extract. Differential

Privacy (DP) is one of the most powerful tools in this context [82, 87]. DP

addresses the apparently self-contradictory problem of keeping private the in-

formation about an individual observation while learning useful information

about a population. In particular, a procedure is DP if and only if its out-

put is almost independent from any of the individual observations (which is

similar, is some sense, to the concept of Stability). In other words, the prob-

ability of a certain output should not change significantly if one individual

is present or not, where the probabilities are taken over the noise introduced

by the procedure. In the last years, DP has been deeply studied from a the-

oretical point of view [56, 86, 88, 124, 129, 144, 158, 191, 223, 247, 250, 273]

and exploited to develop new learning strategies for solving real world prob-

lems [41, 41, 57, 58, 99, 122, 123, 245, 272].

DP allowed to reach a milestone result by connecting the field of privacy pre-

serving data analysis and the generalization capability of a learning algorithm.

From one side it proved that a learning algorithm which shows DP properties

also generalizes [84]. From the other side, if an algorithm is not DP, it allowed

to state the conditions under which a hold out set can be reused without risk

of false discovery through a DP procedure called Thresholdout [83, 85].

As we will see later DP can be applied to probabilistic (randomized) algo-

rithms, we need to know the space of rules from which the algorithms choose

the final rule and the observed data must be sampled independently and



78 9 Differential Privacy Theory

identically distributed (i.i.d.). Even if very powerful, DP is a quite young and

immature field of research which still needs to be carefully studied and deeply

understood.

In order to present the DP Theory, we first recall some preliminary defini-

tions [84, 87, 265]. Let us consider an input space X and an output space Y. We

indicate with µX , µY , and µZ respectively the distributions over X , Y, and the

cartesian product between the input and the output space Z “ XˆY. From Z
we observe a series of n i.i.d. samples s “ tz1, ¨ ¨ ¨, znu “ tpx1, y1q, ¨ ¨ ¨, pxn, ynqu,

where @i P In “ t1, 2, 3, ¨ ¨ ¨, nu we have xi P X , yi P Y, and zi P Z. More-

over, Z is a random variable sampled from Z according to µZ , whereas s is

a dataset inside the space of all the possible datasets S “ Zn and PS is the

distribution of probability generated by µZ over S. Analogously to Z, S is

a random variable sampled from S according to PS . We denote with 9s the

neighborhood dataset of s such that s “ tz1, ¨ ¨ ¨, zi´1, 9zi, zi`1, ¨ ¨ ¨, znu, where

i may assume any value in In and 9zi i.i.d. with zi. We denote with S̆ a subset

of the space of datasets S: S̆ Ď S. Let us define with f : X Ñ Y a function in

a space F of all the possible functions and F̆ Ď F . The functions (or rules) in

F can be deterministic or probabilistic. A randomized algorithm A : S Ñ F
maps a dataset s P S in a function f P F in a nondeterministic way that

can be encapsulated in a distribution µA over F given s P S. We also define

an operator D̆ which maps a function f P F into a subset of all the possible

datasets S̆. For example, D̆ can be seen as an inverse operator of A which,

given an f P F , tries to retrieve the datasets S̆ that may have generated f .

The accuracy of f P F in representing µZ is measured with reference to a loss

function ` : F ˆ Z Ñ r0, 1s. Hence, we can define the true risk of f , namely

generalization error, as

Lpfq “ EZ`pf,Zq, (9.1)

together with its variance

V pfq “ EZr`pf,Zq ´ Lpfqs2. (9.2)

Since µZ is unknown, Lpfq and V pfq cannot be computed. Therefore, we have

to resort to their empirical estimators, respectively the empirical error [265]

pLsnpfq “ 1{n

n
ÿ

i“1

`pf, ziq, (9.3)

and the empirical variance [175]
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pV sn pfq “ 1{npn´ 1q

n
ÿ

i“1

n
ÿ

j“i`1

r`pf, ziq ´ `pf, zjqs
2. (9.4)

Let us recall the definition of DP [87]: a randomized algorithm A is pε, δq-

Differentially Private if

PA

!

A psq P F̆
)

ď eεPA

!

A p 9sq P F̆
)

` δ, @F̆ Ď F , @s P S. (9.5)

Note that in this book we will only deal with pε, 0q-Differentially Private al-

gorithms that we will denote as ε-DP for brevity.

Since we are dealing with ε-DP algorithms it is useful to give an alternative

simpler and more intuitive definition of ε-DP with respect to the one of Eq.

(9.5). Basically this new definition says that if the probability of choosing a

function does not change too much if the algorithm is fed with a dataset s

or with its neighborhood 9s then the algorithm is private [202]: a randomized

algorithm A is ε-DP if

PA tA psq “ fu

PA tA p 9sq “ fu
ď eε, @f P F , @s P S. (9.6)

The milestone result in DP Theory [84] shows that an ε-DP algorithm gen-

eralizes. In particular two main results are derived. The first one [84] is very

general and shows that if a function D̆pfq is defined for each element f P F
and the probability that S P D̆pfq is small, then the probability remains

small if f is chosen based on S and A . In other words the probability that

S P D̆pA pSqq remains small1.

This first result [84] can be formalized as follows. Let A be an ε-DP. Let us

suppose that PStS P D̆pfqu ď β, @f P F . Then

ε ď
a

ln p1{βq{2n Ñ PS,F tS P D̆pF qu ď 3
a

β. (9.7)

The second result, which builds upon the first one, shows that the empirical

error of a function chosen with an ε-DP algorithm is concentrated around its

generalization error [202]. In particular, let A be an ε-DP, then for any t ą 0

ε ď
a

t2 ´ lnp2q{2n Ñ PS,F
!

|LpF q ´ pLSn pF q| ě t
)

ď 3
?

2e´nt
2

. (9.8)

This result can be reformulated in a more convenient expression, which is

more suited for the subsequent analysis [202]. Let A be an ε-DP, then we can

state that

1 From now on with a little abuse of notation we will identify F “ A pSq.
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PS,F
!

|LpF q ´ pLSn pF q| ě ε`
a

1{n

)

ď 3e´nε
2

. (9.9)

The limitation of Bounds (9.8) and (9.9) is the slow convergence rate (i.e.

Op
a

1{nq). When the empirical error is small we would like to retrieve a

Chernoff-type result [65]. Instead, when the variance is small, a Bernstein-

type or Bennet-type bound would be preferred [35, 38].

By exploiting the result of Eq. (9.7) and the Chernoff bound [65] it is possible

to prove the following results, which improve the rate of convergence of the

bound of Eq. (9.8) when pLSn pF q is small [202]. Let A be an ε-DP, then for

any t ą 0

ε ď
a

t2 ´ lnp2q{2n

Ñ PS,F
!

|LpF q ´ pLSn pF q| ě
a

6LpF qt
)

ď 3
?

2e´nt
2

. (9.10)

Note that the rate of convergence of the bound of Eq. (9.10) can be faster

with respect to the one of Eq. (9.8). In fact when pLSn pF q Ñ 0 the convergence

of the bound can reach O p1{nq. This is made more evident in the following

reformulation [202] of the bound of Eq. (9.10): let A be an ε-DP, then we can

state that

PS,F
"

|LpF q ´ pLSn pF q| ě

b

6pLSn pF q
´

ε`
a

1{n

¯

` 6
`

ε2 ` 1{n
˘

*

ď 3e´nε
2

. (9.11)

The bounds of Eqns. (9.10) and (9.11) can be further improved when ` : F ˆ
Z Ñ t0, 1u by exploiting the exact confidence interval for binomial tails [67].

Analogously to the bound of Eq. (9.10) which exploits the Chernoff bound [65],

it is possible to prove the following bound based on the exact confidence

interval for binomial tails [67]. Let A be an ε-DP and ` : F ˆ Z Ñ t0, 1u,

then [202]

ε ď
a

ln p1{2δq{2n

Ñ PS,F
!

LpF q ď Qrδ;npLSn pF q, n´ n
pLSn pF q ` 1s _

LpF q ě Qr1´ δ;npLSn pF q ` 1, n´ npLSn pF qs
)

ď 3
?

2δ, (9.12)

where Qrp; v, ws is the p-th quantile of the Beta distribution with shape pa-

rameters v and w.

Analogously to what has been done for the bound of Eq. (9.10), the bound

of Eq. (9.12) can be easily reformulated as follows. Let A be an ε-DP and

` : F ˆ Z Ñ t0, 1u, then we can state that
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PS,F
!

LpF q ď Qre´2nε2{2;npLSn pF q, n´ n
pLSn pF q ` 1s _

LpF q ě Qr1´ e
´2nε2{2;npLSn pF q ` 1, n´ npLSn pF qs

)

ď 3e´nε
2

. (9.13)

By exploiting a recent result on the Clopper-Pearson bound [59, 67, 193], it

is possible to extend the results of Eq. (9.12) and (9.12) to the general case

of ` : F ˆ Z Ñ r0, 1s. Let u be a random variable uniformly distributed over

r0, 1s and let tu1, ¨ ¨ ¨ , untu be nt variables sampled i.i.d. from u. Let A be an

ε-DP, then

ε ď
a

ln p1{2δq{2n

Ñ PS,F
!

LpF q ď Qrδ;npLS,un pF q, n´ npLS,un pF q ` 1s _ (9.14)

LpF q ě Qr1´ δ;npLS,un pF q ` 1, n´ npLS,un pF qs
)

ď 3
?

2δ,

Ñ PS,F
!

LpF q ď Qre´2nε2{2;npLS,un pF q, n´ npLS,un pF q ` 1s _ (9.15)

LpF q ě Qr1´ e
´2nε2{2;npLS,un pF q ` 1, n´ npLS,un pF qs

)

ď 3e´nε
2

,

where pLs,un pfq “ 1{n
řn
i“1r`pf, ziq ě uis (the Iverson bracket notation [121] is

exploited).

The problem of the bounds of Eq. (9.10), (9.11), (9.12), (9.13), (9.14), and

(9.15) is that, if pLSn pF q is large, the rate of convergence is always O
´

a

1{n

¯

.

In order to improve this result we have to take into account the variance of

F . For this purpose we can use Bernstein or Bennet type inequalities [202].

Analogously to bound of Eq. (9.10), by exploiting the result of Eq. (9.7) and

the Bernstein bound [175] it is possible to prove the following result, which

improves both the bounds of Eqns. (9.8) and (9.10) when pLSn pF q is large and
pV Sn pF q is small. Let A be an ε-DP, then for any t ą 0

ε ď
a

t2 ´ lnp3q{2n (9.16)

Ñ PS,F
"

ˇ

ˇ

ˇ
LpF q ´ pLSn pF q

ˇ

ˇ

ˇ
ě

b

4pV Sn pF qt`
14nt2

3pn´ 1q

*

ď 3
?

3e´nt
2

.

The result of Eq. (9.16) can be reformulated in order to better show the

advances with respect to the bounds of Eqns. (9.8) and (9.10). Let A be an

ε-DP, then we can state that

PS,F
"

ˇ

ˇ

ˇ
LpF q ´ pLSn pF q

ˇ

ˇ

ˇ
ě

b

4pV Sn pF q
´

ε`
a

1{n

¯

`
5n

n´ 1

`

ε2 ` 1{n
˘

*

ď 3e´nε
2

. (9.17)
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Algorithm 6: Differential Privacy Theory: MS and EE Strategy.

Input: tA1, ¨ ¨ ¨ ,AnA u, s, and δ

Output: Optimal Model f˚ and its estimated generalization error Lpf˚q

1 L˚MS “ `8;

2 for A P tA1, ¨ ¨ ¨ ,AnA u do

3 Compute ε for A ;

4 LMS “ ∆ps,A , ε, δq;

5 if L˚MS ą LMS then

6 L˚MS “ LMS;

7 f˚ “ A psq;

8 LpA ˚
pf˚qq “ ∆ps,A , ε, δ

nA
q;

Obviously, these DP-based bounds can be used both for MS and EE purposes

by exploiting the approach described in the preliminaries of this book. In fact

all the DP-based bounds have the following form:

PS,F tLpF q ď ∆pS,A , ε, δqu ě 1´ δ. (9.18)

Then if we want to choose A ˚ P tA1, ¨ ¨ ¨ ,AnA u, namely perform the MS

phase, and estimate the generalization performance of f˚ “ A ˚psq, namely

perform the EE phase, we have to follow the procedure summarized in Algo-

rithm 6. Note that the generalization of the final model is bounded by

PS,F˚
"

LpF ˚q ď ∆

ˆ

S,A ˚, εA ˚ ,
δ

nA

˙*

ě 1´ δ,

@A ˚ P tA1, ¨ ¨ ¨ ,AnA u, (9.19)

with probability p1´ δq, since we have applied the Bonferroni correction [45]

over the nA choices for the algorithm. Note that ∆ depends on the particular

A .

Another important DP-based result is the possibility of using the same hold

out set many times (contrarily to what can be done with the resampling

methods) in adaptive data analysis by adding some noise over the measured

error on the hold out set via Thresholdout algorithm [83, 85]. This is extremely

useful for many reasons. The simplest one is that we need less data to assess

the performance of our data analysis procedure [85]. The less intuitive one

is that, by adding some noise, we reduce the risk of overfitting and false

discovery [85, 87]. Moreover, Thresholdout pushed research into a shift of

paradigm in approaching the problem of adaptive data analysis by introducing
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Algorithm 7: Union Bound for the NAS

Input: st, sh, and P1, ¨ ¨ ¨,Pm

Output: pL
sh
n pf1q, ¨ ¨ ¨, pL

sh
n pfmq

1 for iÐ 1 to m do

2 fi “ Pi pstq and compute pL
sh
n pfiq;

a new methodology which goes beyond the state-of-the-art EE techniques [10,

85, 147, 195]. Finally, Thresholdout does not require any DP property over

the procedure for selecting our models. In particular, we have a training set

with no access restrictions for building the model and we have to interact with

the hold out set through Thresholdout, which instead is DP, for MS and EE

purposes [83]. Basically in the MS phase we will select the model with the

smallest generalization error guaranteed by the EE phase.

In the next paragraphs we will show the benefit of using the adaptive data

analysis with respect to the conventional non-adaptive one specifically for the

problems of MS and EE.

In order to proceed, we first need to recall some preliminary definitions. Let

st P S be a training set and sh P S an hold out set, both of size n and i.i.d.

Let Lappbq be a random variable sampled from a Laplace distribution of mean

zero and variance 2b2, in other words with probability density function lpxq

such that lpxq “ 1{2b e´
|x|{b. In MS and EE we want to create many models fi

with i P Im based on st through a procedure Pi with i P Im and we want to

select the best performing one based on sh. This process can be performed in

a non-adaptive setting (NAS) or in the adaptive one (AS).

The NAS setting is the case when the procedures for building the models Pi

with i P Im exploit just the training set.

For the NAS the best approach [202] is to use the Union Bound [45] (or Bon-

ferroni correction), since all the functions fi “ Pipstq with i P Im are chosen

without seeing sh (see Algorithm 7). This allows to state that, if tf1, ¨ ¨ ¨, fmu

are chosen in a NAS [202],

PSh

$

&

%

Di P Im :
ˇ

ˇ

ˇ
Lpfiq ´ pLShn pfiq

ˇ

ˇ

ˇ
ě

d

ln
`

2m
δ

˘

2n

,

.

-

ď δ. (9.20)

Instead, the AS is the case when the procedures for building our models Pi

with i P Im exploit both the training set and the performance of P1, ¨ ¨ ¨,Pi´1

over the hold out set.
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Algorithm 8: Hold out for the AS

Input: st, sh, and P1, ¨ ¨ ¨,Pm

Output: pL
s1h
n pf1q, ¨ ¨ ¨, pL

smh
n pfmq

1 Split sh in sih with i P Im;

2 for iÐ 1 to m do

3 fi “ Pi

ˆ

st, pL
s1h
n pf1q, ¨ ¨ ¨, pL

si´1
h
n pfi´1q

˙

and compute pL
sih
n pfiq;

In the AS, conversely to NAS, fi with i P Im in general depends on sh (see

Algorithm 8), hence we cannot use the bound of Eq. (9.20). Then, one hold

out set for each Pi with i P Im is needed. Since the data available are just the

ones in sh, we have to split it in m sets of size n{m that we will call s1h, ¨ ¨ ¨, s
m
h

(see Algorithm 8). This allows us to use the Hoeffding inequality [118] and

state that, if tf1, ¨ ¨ ¨, fmu are chosen in an AS [202]:

PSih

$

&

%

Di P Im :
ˇ

ˇ

ˇ
Lpfiq ´ pL

Sih
n pfiq

ˇ

ˇ

ˇ
ě

d

m ln
`

2
δ

˘

2n

,

.

-

ď δ. (9.21)

Note that the bound of Eq. (9.21) has many drawbacks with respect to the

bound of Eq. (9.20). The first one (I) is the slower rate of convergence:

O
´

a

m{n

¯

for the bound of Eq. (9.21) and O
´

a

lnpmq{n

¯

for the bound of

Eq. (9.20). The second one (II) is that the datasets that we use for testing

each fi with i P Im are composed of a smaller number of samples: n{m for the

bound of Eq. (9.21) and n for the bound of Eq. (9.20).

Obviously the advantage of the bound of Eq. (9.21) is that it can be used in

a AS, while the bound of Eq. (9.20) can be used just in the NAS.

The fact that the bound of Eq. (9.21) can be used in the AS can be exploited

for solving drawback (I). Let us make an example. Let us suppose that we

want to select the best hyperparameter of an algorithm. In the NAS the typ-

ical approach is to perform a grid search over g points defined before seeing

the hold out set and select the value which gives the best performance in

accordance with the bound of Eq. (9.20). Hence, we have to set m “ g in

the bound of Eq. (9.20). In the AS, instead, we can employ, for example, a

bisection method for finding the best value of the hyperparameter in accor-

dance with the bound of Eq. (9.21). Obviously this will result, in general, in a

search for a local minima but with the bisection method, in order to explore

the same grid, we need to explore a number of values of the hyperparameter

which is approximately lnpgq. Hence, we have to set m « lnpgq in the bound



9 Differential Privacy Theory 85

Algorithm 9: Thresholdout for the AS

Input: st, sh, T, σ,B, and P1, ¨ ¨ ¨,Pm

Output: a1, ¨ ¨ ¨, am

1 γ „ Lapp2σq, pT “ T ` γ;

2 for iÐ 1 to m do

3 if B ă 1 then

4 ai “ K;

5 else

6 fi “ Pipst, a1, ¨ ¨ ¨, ai´1q, η „ Lapp4σq;

7 if |pL
sh
n pfiq ´ pLstn pfiq| ě pT ` η then

8 ξ „ Lappσq, γ „ Lapp2σq, pT “ T ` γ, B “ B ´ 1;

9 ai “ pL
sh
n pfiq ` ξ;

10 else

11 ai “ pLstn pfiq;

of Eq. (9.21). Consequently, in this example, the rate of convergence of the

two bounds is O
´

a

lnpgq{n

¯

in both the bounds of Eqns. (9.20) and (9.21).

The bound of Eq. (9.21) can be further improved, under particular conditions,

by using the Thresholdout algorithm reported in Algorithm 9. In Algorithm

9, on the contrary to the classical hold out method, we do not have access

to the error on sh directly but we have to corrupt it with a Laplace noise of

variance proportional to σ. Then it is necessary to define a budget B, corrupt

the distance between the error on st and sh again with a Laplace noise of

variance proportional to σ, and, only when it is above a defined threshold T ,

it is possible to access the corrupted test set error by consuming the budget

B. Otherwise, we just look at the error on st. When the budget B is finished,

we cannot test any additional function and we signal this event by returning

K. Thanks to the Thresholdout algorithm we can both improve the rate of

convergence and solve the drawback (II).

Thresholdout is an advanced combination of two main tools in the DP lit-

erature: the Laplace Mechanism and the Sparse Validate techniques [83, 87],

and for this reason it can be proved that Thresholdout is a DP algorithm [83]

with respect to sh. More formally, Thresholdout is 2B{σn-DP with respect to

sh, where B, σ, T ą 0 are user defined parameters of the Thresholdout.

Thresholdout basically perturbs the information over the error on the hold

out set such that we are able to maintain the DP property. The fact that

Thresholdout is 2B{σn-DP together with the previous DP-based generalization
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bounds allows to guarantee that this perturbed error is still concentrated

around the generalization error [83]. Let β, t ą 0 and m ě B ą 0. If T “ 3t{4,

σ “ t{96 ln
´

4m
β

¯

, and t “ 40
a

B ln p12m{βq{n, we have that

PAi,Fi tDi P Im : Ai ‰ K^|Ai ´ LpFiq| ě tu ď β, (9.22)

where Ai and Fi are the random variables associated respectively to ai and

fi in Algorithm 9.

It is easy to note that the bound of Eq. (9.22) improves the rate of convergence

of the bound of Eq. (9.21) and is also tighter when B lnpmq ! m. Moreover

in the bound of Eq. (9.22) the whole hold out set can be used for testing each

fi with i P Im.

Note that, in our hyperparameter search example, we can use the Thresh-

oldout combined with the bisection method and select the best value of the

hyperparameter in accordance with the bound of Eq. (9.22). Consequently,

we have that Thresholdout can improve over both the bounds of Eqns. (9.20)

and (9.21) when B lnplnpgqq ! lnpgq.

Finally, we want to underline that the results of the bounds of Eqns. (9.20),

(9.21), and (9.22) suffer from the problem of having slow convergence rates

O
´

a

1{n

¯

with respect to the number of samples.

The bounds of Eqns. (9.20) and (9.21) can be easily improved via multiplica-

tive Chernoff inequalities [65, 202] and Bennet [35, 175] or Bernstein [38]

inequalities. Then, the same has been done also for the bound of Eq. (9.22).

In particular, let β, t ą 0 and m ě B ą 0. If T “ 3t2{4, σ “ t2{96 ln
´

4m
β

¯

, and

t “ 40
a

B ln p12m{βq{n, we have that [202]

PAi,Fi
!

Di P Im : Ai ‰ K^|Ai ´ LpFiq| ě 30
a

Ait` 50t2
)

ď β. (9.23)

The Bennett version of the bound of Eq. (9.23) is not reported because it is

overcomplicated.
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Conclusions & Further Readings

In this book we tried to provide an intelligible overview of the problems of

Model Selection and Error Estimation by focusing on the ideas behind the

different Statistical Learning Theory based approaches and simplifying most

of the technical aspects with the purpose of making them more accessible and

usable in practice.

We have not obviously covered all the methods available in literature but we

tried to give our point of view of this topic of research by focusing on methods

that do not require any additional knowledge apart from the available data.

This book is the result of many years of research and it can be useful both for

young researchers in order to approach this field of research and for expert

researchers in order to have a starting point for open new path of research.

We encourage the readers to also check other ME and EE promising methods

like, for example, the work on learning without concentration [183], the works

on learning with the low noise assumption [248], the Occam’ Razor Bound [42],

the Bayesian approaches [110], and many others which are to many to list in

this book.

Finally we hope that we managed to transfer to the reader our passion and

dedication for this intriguing, challenging, and multifaceted field of research.





A

Bayesian and Frequentist: an Example

In order to show the differences between the bayesian and frequentist inference

let us solve the same problem with the two approaches. Let us suppose that

we want to find the probability of a swan to be black since we have observed

just white swans. The probability of a swan to be black, can be modeled as

a Bernoulli random variable where the probability of success (probability of

a swan to be black) is P P r0, 1s and the observed probability (the number

of black swan s that we have observed out of a total of n observations) is
pP P r0, 1s.

In the bayesian perspective the parameter P is not fixed but has an unknown

probability distribution and, before observing pP , we have to encapsulate our

prior belief about P in the prior distribution. Since to do not have any prior

information abut P we use an uninformative prior which assigns equal prob-

abilities to all possibilities:

PtP “ pu “

$

&

%

1 if p P r0, 1s

0 otherwise
. (A.1)

Now we could open a debate about the quality of this uninformative prior

respect to other ones like the Jeffreys prior [116] or the Haldane prior [112]

but this is out of the scope of the current presentation and more details can

be found in [53, 66]. Since we are dealing with n realization of a Binomial

distribution we can compute the likelihood or, in other words, is the proba-

bility of observing s black swans in a group of n swans if the probability of

observing a black swan P is known:

P
!

pP “
s

n

ˇ

ˇ

ˇ
P “ p

)

“

ˆ

n

s

˙

psp1´ pqn´s. (A.2)
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Thanks to the Bayes’ theorem we have that:

P
!

P “ p
ˇ

ˇ

ˇ

pP “
s

n

)

“

P
!

pP “ s
n

ˇ

ˇ

ˇ
P “ p

)

PtP “ pu

P
!

pP “ s
n

) . (A.3)

Note that, by the axioms of probability and since P P r0, 1s, we have that:

ż 8

´8

P
!

P “ p
ˇ

ˇ

ˇ

pP “
s

n

)

dp “

ż 1

0

P
!

P “ p
ˇ

ˇ

ˇ

pP “
s

n

)

dp “ 1 (A.4)

Consequently, we can state that:

1 “

ż

8

´8

P
!

pP “ s
n

ˇ

ˇ

ˇ
P “ p

)

PtP “ pu

P
!

pP “ s
n

) dp

“
1

P
!

pP “ s
n

)

ż 1

0

P
!

pP “
s

n

ˇ

ˇ

ˇ
P “ p

)

PtP “ pudp. (A.5)

Based on this result and on Eqns. (A.1) and (A.2) we can compute the

marginal likelihood which is the probability of observing particular exactly

s black swans in n observations:

P
!

pP “
s

n

)

“

ż 1

0

P
!

pP “
s

n

ˇ

ˇ

ˇ
P “ p

)

PtP “ pudp

“

ż 1

0

ˆ

n

s

˙

psp1´ pqn´sdp “
1

n` 1
, (A.6)

where the Euler integral, which states that

ż 1

0

xa´1p1´ xqb´1dx “
pa´ 1q!pb´ 1q!

pa` b´ 1q!
, a, b P N0, (A.7)

has been exploited. Finally by exploiting Eqns. (A.3), (A.2), (A.1) and (A.6)

we can retrieve the probability of the probability of a swan to be black given

the fact that we have observed s black swans in a group of n swans:

P
!

P “ p
ˇ

ˇ

ˇ

pP “
s

n

)

“ pn` 1q

ˆ

n

s

˙

psp1´ pqn´s. (A.8)

From the posterior probability it is possible to retrieve any information about

the probability of a swan to be black. For example we can compute the ex-

pected value:
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EP tP u “
ż 8

´8

pP
!

P “ p
ˇ

ˇ

ˇ

pP “
s

n

)

dp

“

ż 1

0

pn` 1q

ˆ

n

s

˙

ps`1p1´ pqn´s “
s` 1

n` 2
. (A.9)

which is the Laplace rule of succession [151]. Note, again, that the the Euler

integral has been exploited. Another important information about P is it

credible interval. In particular we can state that with probability p1´ δq

P P
”

max
´

0,
s

n
´ ε

¯

,min
´

1,
s

n
` ε

¯ı

, (A.10)

if the following condition is satisfied:

ż minp1, sn`εq

maxp0, sn´εq

pn` 1q

ˆ

n

s

˙

psp1´ pqn´sdp ě 1´ δ. (A.11)

Unfortunately an explicit form of the credible interval does not exists. The

credible interval gives and information abut the possible values of the param-

eter of interest and the interval is true with high probability (see Figure A.1).

Finally we would like to make two observations:

0 1

P{P = p}

s
n

1

P

d

P
n

P = p
��� bP =

s

n

o

Fig. A.1. Bayesian interpretation of probability: credible interval.
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• choosing a different prior would give a different posterior and consequently

a different credible interval respect to the one of Eq. (A.10);

• in Eq. (A.10) we decided to report a credible interval symmetric respect to

the observed ratio. This is a choice that we made but it could be possible

to chose the credible interval which responds to a different criteria (e.g.

the tight interval which contains the area p1´ δq of the total area of the

posterior which is 1).

In the frequentist perspective, instead, the parameter P is fixed and unknown

while pP is a random variable distributed according to a binomial distribution

of parameter P . Consequently we can compute the probability of observing s

black swans in n observations:

P
!

pP “
s

n

)

“

ˆ

n

s

˙

P sp1´ P qn´i. (A.12)

We can also compute the probability of observing at most s black swans out

n swans

P
!

pP ď
s

n

)

“

s
ÿ

i“0

ˆ

n

i

˙

P ip1´ P qn´i, (A.13)

and the probability of observing at least s black swans out n swans

P
!

pP ě
s

n

)

“

n
ÿ

i“s

ˆ

n

i

˙

P ip1´ P qn´i. (A.14)

Conversely to Bayesian statistic there is no meaning in searching for the ex-

pected value of P since P is a deterministic variable. What we can do is to

find the confidence interval for the probability of a swan to be black P which

is the the range of values of P that with probability p1 ´ δq could have gen-

erated our particular observation of s black swan out of n. In other words if

we repeat again the observations of n swans, we check how many swans are

black and we compute the confidence interval, P will fall in that interval at

least with probability p1 ´ δq (see Figure A.2). For this reason we have to

search for the largest and the smallest values of P such that the probability

obtaining at most and at least s black swans out n swans is grater than δ{2.

Then we can state that if s black swans out n swans are observed than for

the probability of a swan to be black the following statement must hold with

probability p1´ δq:

P P

«

minpPr0,1s
 

p :
řn
i“s

`

n
i

˘

pip1´ pqn´iě δ
2

(

,

maxpPr0,1s
 

p :
řs
i“0

`

n
i

˘

pip1´ pqn´iě δ
2

(

ff

. (A.15)
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0 1

⇥

⇥
P

d

s
n
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n
s

Fig. A.2. Frequentist interpretation of probability: confidence interval.

There are different forms of the quantities in Eq. (A.15), refer to Appendix C

for more details.

In order have some insight on the the results of the two approaches let us

suppose that we have observed n “ 30 swans out of which just s “ 3 are

black. Based on the bayesian statistic (see Eq. (A.10)) we have that

P P r0.00, 0.24s with probability 0.95, (A.16)

while, based on frequentist statistic (see Eq. (A.15)) we have that

P P r0.02, 0.27s with probability 0.95. (A.17)

The code for retrieving these results of Eqns. (A.16) and (A.17) can be found

in Listing A.1.

Listing A.1. Mathematica code for computing the credible and confidence interval

of Eqns. (A.16) and (A.17)

(∗ Parameters ∗)
n = 30 ;

s = 3 ;

de l t a = . 0 5 ;

(∗ Bayesians ∗)



94 A Bayesian and Frequentist: an Example

c r e i n t [ s , n , d e l t a ] :=(

For [ e p s i l o n =0, eps i l on <=1, ep s i l o n=ep s i l o n +.001 ,

tmp = NIntegrate [ ( n+1)Binomial [ n , s ] pˆ s (1´p )ˆ(n´s ) ,

{p ,Max[ 0 , ( s /n)´ ep s i l o n ] ,Min [ 1 , ( s /n)+ ep s i l o n ] } ] ;

I f [ tmp>=1́ de l ta ,

Return [ e p s i l o n ] ;

] ;

] ;

) ;

e p s i l o n=c r e i n t [ s , n , d e l t a ] ;

lb=Max[ 0 , ( s /n)´ ep s i l o n ]

lb=Min [ 1 , ( s /n)+ ep s i l o n ]

(∗ Frequant i s t s ∗)
l f=Quantile [ Be taDi s t r ibut i on [ s , n´s +1] ,( d e l t a /2 ) ]

uf=Quantile [ Be taDi s t r ibut i on [ s+1,n´s ] ,1´( de l t a /2 ) ]

(∗ Clean ∗)
Clear [ n , s , de l ta , c r e i n t , ep s i l on , lb , ub , l f , u f ]

Note that the two intervals are not so different, but the two approaches gives

to radically different informations. The credible interval is an interval in the

domain of a posterior probability distribution. Bayesian intervals treat their

bounds as fixed and the estimated parameter as a random variable. A frequen-

tist p1 ´ δq confidence interval means that with a large number of repeated

samples there is a probability of p1´δq of such calculated confidence intervals

to include the true value of the parameter. The frequentist confidence intervals

treat their bounds as random variables and the parameter as a fixed value.

Most of the times to two statistical approaches often behave, like in this case,

pretty much the same, but in some cases one can be easier to apply respect

to the other.



B

The Wrong Set of Rules could be the Right

One

The problem of MS and EE is very tricky since some results are often counter

intuitive. Let us make an example. Let us suppose that x P X “ r0, 1s and

y P Y “ R. Let us suppose that S is the following one:

Y “ X2 ` ε, (B.1)

where ε is a random variable distributed according to a Normal distribution

of mean µ “ 0 and variance σ and PtX “ xu “ 1 if x P r0, 1s otherwise

PtX “ xu “ 0. We define our set of rules Fh as the polynomials of degree h:

fpxq “
h
ÿ

i“0

aix
i, (B.2)

where the unknown parameters which defines the final rule are ta1, . . . , ahu P

Rh`1 and h P N0 is the hyperparameter which defines the size of the set of rules

(the degree of the polynomial). The error of f in approximation S is measured

according to the square loss function `2pf, zq “ ry´ fpxqs
2. Consequently the

generalization error of a function chosen in Fh can be written as:

Lpfq “ EXEε
!

“

X2 ` ε´ fpXq
‰2
)

“ EXEε

$

&

%

«

X2 ` ε´
h
ÿ

i“0

aiX
i

ff2
,

.

-

, f P Fh (B.3)

Consequently the Bayesian rule will be:
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fBayes : arg inf
f

Lpfq

“ arg inf
f

EXEε
 

rX2 ` ε´ fpXqs2
(

“ arg inf
f

EXEε
 

X4 ` 2X2ε` ε2 ´ 2fpXqrX2 ` εs ` rfpXqs2
(

“ arg inf
f

EX
 

rfpXqs2 ´ 2fpXqrX2 ` Eε tεus `X4 ` Eε
 

ε2
((

“ arg inf
f

EX
 

rX2 ´ fpXqs2
(

. (B.4)

Since EX
 

rfpXq ´X2s2
(

ě 0 and since if we select as function fpxq “ x2 we

have that EX
 

rfpXq ´X2s2
(

“ 0 and we can state that:

fBayespxq “ x2. (B.5)

Let us remember a property of the Normal distribution in order to compute

the generalization error of the Bayesian rule:

Eε tpµ´ εqpu “

$

&

%

σppp´ 1q!! if p even

0 otherwise
, p P N. (B.6)

Consequently the generalization error of the Bayesian rule can we derived:

LpfBayesq “ EXEε
 

rX2 ` ε´ fBayespXqs2
(

“ Eε
 

ε2
(

“ σ2. (B.7)

If instead we search for the best approximation of the Bayesian rule in Fh,

we have that:

• if h “ 0

f˚0 pxq “ a˚0 : arg inf
a0PR

EXEε
 

rX2 ` ε´ a0s
2
(

(B.8)

“ arg inf
a0PR

EX
 

rX2 ´ a0s
2
(

“ arg inf
a0PR

ż 1

0

rx2 ´ a0s
2dx “ arg inf

a0PR
a20 ´

2

3
a0 `

1

5
.

Consequently we have that:

f˚0 pxq “
1

3
. (B.9)

The generalization error of f˚0 is:
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Lpf˚0 q “ EXEε
!

“

X2 ` ε´ f˚0 pXq
‰2
)

“ EXEε

#

„

X2 ` ε´
1

3

2
+

“ EXEε
"

X4 ` 2εX2 ` ε2 ´
2

3
pX2 ` εq `

1

9

*

“

ż 1

0

x4 ´
2

3
x2 ` σ2 `

1

9
dx

“ σ2 `
4

45
“ σ2 ` 0.0889; (B.10)

• if h “ 1

f˚1 pxq “ a˚0 ` a
˚
1x : arg inf

ta0,a1uPR2
EXEε

 

rX2 ` ε´ a0 ´ a1Xs
2
(

(B.11)

“ arg inf
ta0,a1uPR2

EX
 

rX2 ´ a0 ´ a1Xs
2
(

“ arg inf
ta0,a1uPR2

ż 1

0

rx2 ´ a0 ´ a1xs
2dx

“ arg inf
ta0,a1uPR2

a20`
1

3a21
`a0a1´

2

3
a0´

1

2
a1`

1

5
.

By putting the derivative respect to a0 and a1 to zero we have that:
$

&

%

2a˚0 ` a
˚
1 “

2
3

a˚0 `
2
3a
˚
1 “

1
2

. (B.12)

Consequently, by solving the above linear system, we have that:

f˚1 pxq “ ´
1

6
` x. (B.13)

The generalization error of f˚1 is:

Lpf˚1 q “ EXEε
!

“

X2 ` ε´ f˚1 pXq
‰2
)

“ EXEε

#

„

X2 ` ε`
1

6
´X

2
+

“ EXEε

#

X4 ` 2εX2 ` ε2 ` 2pX2 ` εq

ˆ

1

6
´X

˙

`

ˆ

1

6
´X

˙2
+

“

ż 1

0

x4 ` 2x2
ˆ

1

6
´ x

˙

`

ˆ

1

6
´ x

˙2

` σ2dx

“ σ2 `
1

180
“ σ2 ` 0.0056; (B.14)
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• if h ě 2

f˚h pxq “ x2, (B.15)

since the space of function contains the Bayesian rule. The generalization

error of f˚h with h ě 2 is exactly as the one of the Bayesian rule:

Lpf˚h q “ LpfBayesq “ σ2, h ě 2. (B.16)

Unfortunately in a real applications S is unknown so fBayes and f˚h are un-

known. For this reason let us suppose to have just some empirical data dnl
available. We have to define an algorithm that tries to select in Fh a function

that is as close as possible to the best approximation of the Bayesian rule in

Fh which is f˚h . The first idea about Ah is to search for the function according

with the smallest error over the available data:

pf˚h “
h
ÿ

i“0

â˚i x
i : arg inf

ta0,¨¨¨ ,ahuPRh`1

1

nl

nl
ÿ

i“1

ryi ´ fhpxiqs
2

“ arg inf
ta0,¨¨¨ ,ahuPRh`1

nl
ÿ

i“1

«

yi ´
h
ÿ

i“0

aix
i

ff2

, (B.17)

and in order to find the best ta0, ¨ ¨ ¨ , ahu P Rh`1, we have the solve the

following linear system:

»

—

—

—

—

–

1 x1 x21 ¨ ¨ ¨ x
h
1

1 x2 x22 ¨ ¨ ¨ x
h
2

...
...

...
...

...

1 xnl x
2
nl
¨ ¨ ¨ xhnl

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

a0

a1

a2
...

ah

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

y1

y2
...

yn

fi

ffi

ffi

ffi

ffi

fl

. (B.18)

Since EpX1,Y1q,¨¨¨ ,pXnl ,Ynl q
1
nl

řnl
i“1rYi ´ fhpXiqs

2 “ Lpfhq we have minimized

the empirical unbiased estimator of Lpfq. Note that pf˚h can be seen as a ran-

dom variable since it depends on dnl and Ah has the following characteristics:

• if h P t0, 1u the approximation error is different from zero and the estima-

tion error, in general could be different from zero;

• if h ě 2 the approximation error is zero and the estimation error could be

different from zero;

• we consider the implementation error equal to zero even if the linear sys-

tem will be solved with numerical routines.
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Since in this case we know S we can compute the generalization error of pf˚h :

Lp pf˚h q “ EXEε

$

&

%

«

X2 ` ε´
h
ÿ

i“0

â˚i X
i

ff2
,

.

-

“ EXEε

$

&

%

X4 ` 2εX2 ` ε2 ´ 2pX2 ` εq
h
ÿ

i“0

â˚i X
i `

˜

h
ÿ

i“0

â˚i X
i

¸2
,

.

-

“

ż

1

0

x4 ` σ2 ´ 2x2
h
ÿ

i“0

â˚i x
i `

˜

h
ÿ

i“0

â˚i x
i

¸2

dx

“ σ2 `
1

5
`

ż

1

0

´2x2
h
ÿ

i“0

â˚i x
i `

˜

h
ÿ

i“0

â˚i x
i

¸2

dx, f P Fh. (B.19)

Note that the last integral has no close form solution for a general h and

ta0, ¨ ¨ ¨ , ahu, as soon as h becomes fixed the integral has a simple close form

solution. In order to understand the quality of the algorithm it does not make

sense to check the generalization error of pf˚h for a single dnl but we have to

compute its average behaviour over the whole possible dataset coming from

S:

EpX1,Y1q,¨¨¨ ,pXn,Ynq inf
ta0,¨¨¨ ,ahuPRh

n
ÿ

i“1

«

Yi ´
h
ÿ

i“0

aiX
i

ff2

(B.20)

In Table B.1 we report, by varying nl and h the estimation of the quantity of

Eq. (B.20) with σ “ 1 (the code behind Table B.1 is reported in Listing B.1

and it is just a mere application of Eq. (B.20)).

Listing B.1. Matlab code for reproducing Table B.1

%% Cleaning

clear

close a l l

c lc

%% Parameters

seed = 13 ;

sigma = 1 ;

nMC = 10000;

rn = [3 30 300 3000 ] ;

mh = 4 ;

%% Def in i t ion of the i n t e g r a l s for the genera l i z a t i on error

i 0 = @( f , s ) s ˆ2+1/5´((2∗ f (1))/3)+ f ( 1 ) ˆ 2 ;

i 1 = @( f , s ) i 0 ( f , s)´ f (2)/2+ f (1)∗ f (2)+ f (2 )ˆ2/3 ;

i 2 = @( f , s ) i 1 ( f , s )´(2∗ f (3))/5+2/3∗ f (1 )∗ f (3)+1/2∗ f (2 )∗ f (3)+ f (3 )ˆ2/5 ;

i 3 = @( f , s ) i 2 ( f , s)´ f (4)/3+1/2∗ f (1 )∗ f (4)+2/5∗ f (2 )∗ f (4)+1/3∗ f ( 3 ) . . .
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∗ f (4)+ f (4 )ˆ2/7 ;

i 4 = @( f , s ) i 3 ( f , s )´(2∗ f (5))/7+2/5∗ f (1 )∗ f (5)+1/3∗ f (2 )∗ f (5)+2/7∗ f ( 3 ) . . .

∗ f (5)+1/4∗ f (4 )∗ f (5)+ f (5 )ˆ2/9 ;

%% Set the random seed

s = RandStream( ’mcg16807 ’ , ’ seed ’ , seed ) ;

RandStream . setGlobalStream ( s ) ;

%% Compute the average genera l i z a t i on error and i t s standard dev ia t ion

rism = zeros (mh+1, length ( rn ) ) ; r i s v = rism ;

in = 0 ;

for n = rn

in = in + 1 ;

for MC = 1:nMC

x = rand (n , 1 ) ;

y = x .ˆ2 + sigma∗randn ( s ize ( x ) ) ;

m = [ ] ;

for i = 0 :4

m = [m, x . ˆ i ] ; %#ok<AGROW>

f = m\y ;

tmp = eval ( sprintf ( ’ i%d( f , sigma ) ’ , i ) ) ;

r ism ( i +1, in ) = rism ( i +1, in ) + tmp ;

r i s v ( i +1, in ) = r i s v ( i +1, in ) + tmpˆ2 ;

end

end

end

rism = rism/nMC;

r i s v = sqrt ( r i s v /nMC ´ rism . ˆ 2 ) ;

%% Student 95% confidence i n t e r v a l

eps = 2∗ r i s v / sqrt (nMC) ;

%% Make the t a b l e

r i s = zeros (mh+1,2∗ length ( rn ) ) ;

r i s ( : , 1 : 2 : end) = rism ;

r i s ( : , 2 : 2 : end) = eps ;

fpr int f ( repmat ( [ repmat ( ’%.3e pm %.3e , ’ , 1 , length ( rn ) ) , ’\n ’ ] . . .

, 1 ,mh+1) , r i s ’ ) ;

h

nl
3 30 300 3000

0 1.4549˘ 0.0104 1.1239˘ 0.0010 1.0925˘ 0.0001 1.0893˘ 0.0000

1 11.1917˘ 5.5205 1.0737˘ 0.0014 1.0124˘ 0.0001 1.0062˘ 0.0000

2 5 ¨ 108
˘ 1 ¨ 109 1.1095˘ 0.0020 1.0102˘ 0.0002 1.0010˘ 0.0000

3 5 ¨ 108
˘ 1 ¨ 109 1.1705˘ 0.0059 1.0136˘ 0.0002 1.0013˘ 0.0000

4 5 ¨ 108
˘ 1 ¨ 109 1.2728˘ 0.0110 1.0171˘ 0.0002 1.0017˘ 0.0000

Table B.1. No free lunch theorem: the right model is the wrong one.
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From Table B.1 it is possible to retrieve many useful insight about the algo-

rithm Ah, in particular, intuitively, one expect Ah to have a smaller average

generalization error for h ě 2 since, in this case Fh contains the Bayesian

classifier, so the approximation error is zero and the algorithm is affected just

by the estimation error. Vice versa if h P t0, 1u the approximation error is

different from zero (and is larger for h “ 0 respect to when h “ 1) moreover

there is the estimation error which affects the procedure. Intuitively, based on

these consideration these considerations, one should always select an h which

is grater or equal to two since, thanks to this choice, the corresponding Fh has

no approximation error. Moreover since we do not know a priori the right h

(since in real applications just dnl is available) it is better to choose h as large

as possible in order to be sure that the bayesian classifier is inside Fh and

the approximation error is equal to zero. Table B.1 tell us a different story. In

particular from Table B.1 it is possible to note a very important fact: the best

choice of h does not depends just on S but also on the number of observations

nl of S. Table B.1 tell us that:

• choosing h ą 2 is never a good option especially if nl is small;

• choosing h “ 2 which is exactly the right Fh is the correct choice only if

nl is large enough;

• choosing h P t0, 1u is the best option if nl is small. Moreover the smaller

is nl the smaller is the h that you should chose.

This simple example is at the basis of one of the biggest problem of learn-

ing based on empirical data. Sometimes and algorithm that choses from the

wrong set of models based on dnl can show better generalization performances

respect to the right one because the different sources of error (in this case ap-

proximation and estimation) one average can be larger or smaller based on

S and how many observation nl of S are available. This means that if, for

example, we take nl “ 3 observations and h “ 0 the approximation error is

big but the estimation error is small enough to compensate the case when

h “ 2 where the approximation error is zero and we have just the estimation

error. It is possible to show that also for the implementation error the same

phenomena depicted in Table B.1 can be observed: basically an algorithm

which is affected by the implementation error could work better then its im-

plementation error-free counterpart. One can refer to [200] for some examples

and theoretical analysis of the effect of the implementation error on learning.

This effect can be explained with the Occam’s Razor principle formulated by

William of Occam in the late Middle Ages as a criticism to the science of that
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time (in particular philosophy) where the theories became more and more

elaborate without any corresponding improvement in their predictive power.

In its original form, it states that ’Nunquam ponenda est pluralitas sin nece-

sitate’, which approximately means ’Entities should not be multiplied beyond

necessity’. Today this principle is used to explain the phenomena described

above in the sense that there is no meaning in choosing a too complex set of

rules Fh, or in other words a too large h, if we do not have enough information

available, or in other words if nl is too small.



C

Properties and Inequalities

In this part of the appendix we recall some properties and inequalities that

have been exploited in this monograph.

The Bonferroni Correction

In probability theory, the Bonferroni correction, also known as the Union

Bound or Boole’s inequality, states that for any finite or countable set of

events, the probability that at least one of the events happens is no greater

than the sum of the probabilities of the individual events [45]. Formally, for a

countable set of events tE1, ¨ ¨ ¨ , Enu we have that:

PE1,¨¨¨ ,En

#

n
ď

i“1

Ei

+

ď

n
ÿ

i“1

PEi tEiu . (C.1)

The inequality can be proved via induction method. In particular, let us first

recall some properties [54]. For all i, j P t1, ¨ ¨ ¨ , nu it is possible to state that:

n
ď

i“1

Ei “

˜

n
ď

i“1,i‰j

Ei

¸

Y Ej , (C.2)

PEi,Ej tEi Y Eju “ PEi tEiu ` PEj tEju ´ PEi,Ej tEi X Eju . (C.3)

Consequently, we can derive the following bound:
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PE1,¨¨¨ ,En

#

n
ď

i“1

Ei

+

“ PE1,¨¨¨ ,En

#

E1 Y

˜

n
ď

i“2

Ei

¸+

“ PE1
tE1u ` PE2,¨¨¨ ,En

#

n
ď

i“2

Ei

+

´ PE1,¨¨¨ ,En

#

E1 X

˜

n
ď

i“2

Ei

¸+

ď PE1
tE1u ` PE2,¨¨¨ ,En

#

n
ď

i“2

Ei

+

, (C.4)

since the probability of an event is always a nonnegative number [138]

PE1,¨¨¨ ,En

#

E1 X

˜

n
ď

i“2

Ei

¸+

ě 0. (C.5)

By applying the induction hypotheses it is possible to retrieve the Bonferroni

correction.

Jensen’s Inequality

Jensen’s inequality relates the value of a convex function of an integral to the

integral of the convex function [126]. In the context of probability theory, it

is stated as follows: if X is a random variable which takes values in X Ď R,

and ϕ : RÑ R is a convex function, then

ϕpEXtXuq ď EXtϕpXqu. (C.6)

The proof in the continuous case is rather technical and can be retrieved from

[126]. Here we report the proof for the finite case: X “ tx1, ¨ ¨ ¨ , xnu. Since ϕ

is convex, if we take t P r0, 1s we obtain:

ϕptxi ` p1´ tqxjq ď tϕpxiq ` p1´ tqϕpxjq, @i, j P t1, ¨ ¨ ¨ , nu. (C.7)

Note also that the expected value of the random variable X can be written

as:

EXtXu “
n
ÿ

i“1

xiPXtX “ xiu, (C.8)

where

n
ÿ

i“1

PXtX “ xiu “ 1. (C.9)
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Thanks to these definitions we can prove the inequality:

ϕpEXtXuq “ ϕ

˜

n
ÿ

i“1

xiPXtX “ xiu

¸

(C.10)

“ ϕ

˜

x1PXtX “ x1u ` p1´ PXtX “ x1uq
n
ÿ

i“2

xi
PXtX “ xiu

1´ PXtX “ x1u

¸

ď PXtX “ x1uϕpx1q ` p1´ PXtX “ x1uqϕ

˜

n
ÿ

i“2

xi
PXtX “ xiu

1´ PXtX “ x1u

¸

.

Since

n
ÿ

i“2

PXtX “ xiu

1´ PXtX “ x1u
“ 1, (C.11)

one can apply the induction hypotheses to the last term in the previous for-

mula to obtain the result:

ϕpEXtXuq (C.12)

“ ϕ

˜

n
ÿ

i“1

xiPXtX “ xiu

¸

ď

n
ÿ

i“1

ϕpxiqPXtX “ xiu “ EXtϕpXqu.

Note also that, if we multiply both sides of Jensen’s inequality by ´1, we can

obtain:

´ϕpEXtXuq ě ´EXtϕpXqu “ EXt´ϕpXqu. (C.13)

Since ϕ is convex ´ϕ is concave. Consequently, if ϕ : Rd Ñ R is a concave

function we obtain:

ϕpEXtXuq ě EXtϕpXqu. (C.14)

The Jensen’s inequality is one of the most exploited properties in statistics

because of its generality and simplicity.

Markov’s Inequality

Markov’s inequality gives an upper bound for the probability that a non-

negative random variable X, which assumes values in X Ď r0,8q, is greater

than or equal to some positive constant [54]. In other words, for any t P p0,8q:

PXtX ě tu ď
EXtXu

t
. (C.15)
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In order to prove the property let us suppose that X is distributed according

to a probability distribution P where its PDF is p : X Ñ r0,8q. Based on

these definitions we can state that:

EXtXu “
ż 8

0

xppxqdx “

ż t

0

xppxqdx`

ż 8

t

xppxqdx ě

ż 8

t

xppxqdx

ě

ż 8

t

tppxqdx ě t

ż 8

t

ppxqdx “ tPXtX ě tu. (C.16)

Moreover, if ϕ : RÑ r0,8q is a strictly monotonically increasing nonnegative-

valued function, for any t P p0,8q we obtain:

PXtϕpXq ě ϕptqu ď
EXtϕpXqu

ϕptq
. (C.17)

The proof is analogous to the one of Eq. (C.16). Markov’s inequality is ex-

tremely useful and it is the basis of each result presented in this monograph.

In fact, it is used to prove all the CIQs for sum of i.i.d. variables [118] and for

functions of i.i.d. random variables [47].

Chebyshev’s Inequality

The Chebyshev’s inequality measures how large is the probability of a random

variable X, which assumes values in X Ď r0,8q, to be far from its expected

value in terms of its variance [258]. Note that Chebyshev’s inequality can be

seen and as a simple application of Markov’s inequality, for any t P p0,8q:

PXtX ´ EXtXu ě tu ď PXt|X ´ EXtXu| ě tu “ PXtpX ´ EXtXuq2 ě t2u

ď
EXtpX ´ EXtXuq2u

t2
“

VXtXu
t2

. (C.18)

Analogously we can state that for any t P p0,8q:

PXtEXtXu ´X ě tu ď
VXtXu
t2

. (C.19)

Analogously to Markov’s inequality, Chebyshev’s inequality possesses great

utility because it can be applied to completely arbitrary distributions.

Hoeffding’s Lemma

Hoeffding’s lemma is an inequality which bounds the moment-generating func-

tion of any bounded random variable [118]. Let X be a random variable which
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assumes values in X Ď ra, bs, with a, b P R, a ď b and EXtXu “ 0. Because of

the convexity of the exponential function we can state that @h P R:

EX
 

ehX
(

ď EX
"

b´X

b´ a
eha `

X ´ a

b´ a
ehb

*

(C.20)

“
b´ EXtXu

b´ a
eha `

EXtXu ´ a
b´ a

ehb (C.21)

“
b

b´ a
eha ´

a

b´ a
ehb. (C.22)

By setting λ “ hpb´ aq, p “ ´a{pb´ aq and fpλq “ lnp1´ p` pehq ´ hp we

obtain:

EX
 

ehX
(

ď efpλq. (C.23)

Taking the derivative with respect to λ we obtain:

fp0q “ 0,
dfpλq

dλ


λ“0

“ 0,
d2fpλq

dλ2


λ“0

ď
1

4
, (C.24)

Consequently by Taylor expansion, we obtain:

EX
 

ehX
(

ď efpλq ď e
1
8λ

2

“ e
1
8h

2
pb´aq2 . (C.25)

This is a property that is widely used for deriving CIQs as the HIQs [118] and

the BDFIQs [181].

Kullback-Leibler Divergence and Pinsker’s Inequality

The Kullback-Leibler divergence [142] is a non-symmetric measure of the

difference between two probability distributions Q and P defined over a

set X . If Q and P are continuous distributions their PDFs are respectively

p : X Ñ r0,8q and q : X Ñ r0,8q and with x we indicate a point in the set

X . The divergence is defined as follows:

KLpQ||Pq “

ż

X
qpxq ln

„

qpxq

ppxq



dx. (C.26)

If Q and P are discrete distributions and Q and P are random variables

distributed according to respectively Q and P, we have that:

KLpQ||Pq “
ÿ

xPX
PtQ “ xu ln

„

PtQ “ xu

PtP “ xu



dx. (C.27)
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Whenever qpxq (or PtQ “ xu) is zero the contribution of that term is inter-

preted as zero because:

lim
aÑ0

a ln
”a

b

ı

“ 0, a, b P r0,8q. (C.28)

The Kullback-Leibler divergence is defined only if ppxq “ 0 (or PtP “ xu “ 0)

implies qpxq “ 0 (or PtQ “ xu “ 0). Nevertheless, in [31] it is noted that

the divergence becomes infinite whenever ppxq “ 0 (or PtP “ xu “ 0) and

qpxq ‰ 0 (or PtQ “ xu ‰ 0) (no matter how small):

lim
bÑ0

a ln
”a

b

ı

“ 8, a, b P r0,8q. (C.29)

A particular case is when Q and P are Bernoulli distributions [127] with prob-

ability of success respectively equal to q P r0, 1s and p P r0, 1s. In this case we

obtain:

KLpQ||Pq “ q ln

„

q

p



` p1´ qq ln

„

p1´ qq

p1´ pq



fi klpq||pq. (C.30)

Pinsker’s inequality, instead, is an inequality that bounds the total variation

distance (or statistical distance) in terms of the Kullback-Leibler divergence

[211, 262]. The inequality is tight up to constant factors [73].

sup
AĎX

ˇ

ˇ

ˇ

ˇ

ż

A
rqpxq ´ ppxqs dx

ˇ

ˇ

ˇ

ˇ

ď

c

1

2
KLpQ||Pq,

continuous

distributions
, (C.31)

sup
AĎX

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xPA
rPtQ“xu´PtP“xus

ˇ

ˇ

ˇ

ˇ

ˇ

ď

c

1

2
KLpQ||Pq,

discrete

distributions
. (C.32)

The proof is rather technical and it will not be reported here but it can be

retrieved from [262]. Again, when Q and P are Bernoulli distributions, we

obtain:

|q ´ p| ď

c

1

2
klpq||pq. (C.33)

The Kullback-Leibler divergence and Pinsker’s inequality are widely used both

in deriving CIQs (e.g. the HIQs [118]) and in the SLT [267] (e.g. the PAC Bayes

Theory [180]).

Inequalities for Sum of Random Variables

The law of large numbers of classical probability theory states that sums of

independent random variables are, under very mild conditions, close to their
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expectation with large probability [54]. A series of inequalities can be derived

for specifying how close they are. Let tX,X1, ¨ ¨ ¨ , Xnu be n`1 bounded i.i.d.

random variables which take values in X Ď r0, 1s such that:

EXtXu “ µ, (C.34)

VXtXu “ σ2. (C.35)

Moreover let us define their empirical unbiased counterparts:

pµ “
1

n

n
ÿ

i“1

Xi, (C.36)

pσ2 “
1

n´ 1

n
ÿ

i“1

pXi ´ pµq2 “
1

2npn´ 1q

n
ÿ

i“1

n
ÿ

j“1

pXi ´Xjq
2. (C.37)

Note that [54]:

EX1,¨¨¨ ,Xntpµu “ µ, (C.38)

EX1,¨¨¨ ,Xntpσ
2u “ σ2. (C.39)

Based on this preliminary definitions we can present the different inequalities.

Clopper-Pearson’s Inequalities

The CPIQ state the exact confidence intervals for Binomial tails [67]. In par-

ticular let X “ t0, 1u, so the random variables under analysis are Bernoulli

random variables [127] with probability of success µ. Then, for each t P

t0, 1{n, 2{n, ¨ ¨ ¨ , 1u, we obtain:

PX1,¨¨¨ ,Xntpµ “ tu “

ˆ

n

nt

˙

µntp1´ µqn´nt, (C.40)

PX1,¨¨¨ ,Xn tpµ ď tu “
nt
ÿ

i“0

ˆ

n

i

˙

µip1´ µqn´i, (C.41)

PX1,¨¨¨ ,Xn tpµ ě tu “
n
ÿ

i“nt

ˆ

n

i

˙

µip1´ µqn´i. (C.42)

Based on these definitions we can bound, with probability p1´ δq, the prob-

ability of success µ given the fact that we observed npµ successes:

µ ď max
pPr0,1s

«

p :
npµ
ÿ

i“0

ˆ

n

i

˙

pip1´ pqn´i ě δ

ff

fi cpďppµ, n, δq, (C.43)

µ ě min
pPr0,1s

«

p :
n
ÿ

i“npµ

ˆ

n

i

˙

pip1´ pqn´i ě δ

ff

fi cpěppµ, n, δq. (C.44)
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We can also bound, with probability p1 ´ δq, pµ given that the probability of

success is µ:

pµ ď max
cPt1,¨¨¨ ,nu

«

c

n
:

n
ÿ

i“c

ˆ

n

i

˙

µip1´ µqn´i ě δ

ff

fi xcpďpµ, n, δq, (C.45)

pµ ě min
cPt1,¨¨¨ ,nu

«

c

n
:

c
ÿ

i“0

ˆ

n

i

˙

µip1´ µqn´i ě δ

ff

fi xcpěpµ, n, δq. (C.46)

Unfortunately these bounds are all in closed form but they can be easily com-

puted with simple numerical routines [7]. For example, because of a relation-

ship between the cumulative Binomial distribution and the Beta distribution

[127], cpď and cpě are sometimes presented in an alternative format that uses

quantiles from the beta distribution:

cpďppµ, n, δq “ Qp1´ δ;npµ` 1, n´ npµq, (C.47)

cpěppµ, n, δq “ Qpδ;npµ, n´ npµ` 1q, (C.48)

where Qpp; v, wq is the p-th quantile from a Beta distribution with shape pa-

rameters v and w.

Even if the bounds are in implicit form, there are some properties which may

be useful in order to better handle and understand them. In particular, in

[147], it has been proved that:

cpďppµ, n, e
´xq ď pµ`

c

x

2n
, (C.49)

cpďppµ, n, e
´xq ď pµ`

c

pµ
2x

n
`

2x

n
, (C.50)

cpďp0, n, e
´xq ď

x

n
, (C.51)

cpďppµ, n, δq ´ pµ ď cpď p0.5, n, δq ´ 0.5. (C.52)

A further result can be retrieved by exploiting the CPIQ. In particular, it is

possible to establish a fundamental connection between binomial parameters

and means of bounded random variables [59, 60]. Let X “ r0, 1s distributed

according to P with its PDF p : X Ñ R. Let U be a random variable uniformly

distributed over U “ r0, 1s, and consequently its PDF is upuq “ 1 if u P r0, 1s

and upuq “ 0 elsewhere. Let us suppose that X and U are independent. Then:

PX,U tX ě Uu “

ż 1

0

ˆ
ż x

0

upuqdu

˙

ppxqdx “

ż 1

0

xppxqdx “ EX tXu . (C.53)
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We can exploit this property in order to prove a general result for sum of

bounded random variables. Let tU,U1, ¨ ¨ ¨ , Unu be n ` 1 i.i.d. random vari-

ables. Let also tZ,Z1, ¨ ¨ ¨ , Znu be other n`1 i.i.d. random variables such that

Z “ rX ě U s. Note that Z is a Bernoulli random variable. By exploiting the

previous results we can state that the following bound holds with probability

p1´ δq:

µ “ EX tXu “ PX,U tX ě Uu

“ EX,U trX ě U su ď cpď

˜

1

n

n
ÿ

i“1

rXi ě Uis, n, δ

¸

. (C.54)

Analogously, we can state that:

µ ě cpě

˜

1

n

n
ÿ

i“1

rXi ě Uis, n, δ

¸

. (C.55)

In order to avoid an unlucky realization, and since we know the distribution of

U , one can generate much more realizations of U : tU1, ¨ ¨ ¨ , Umnu. By taking

the average of the different realizations we can state that the following bounds

hold with probability p1´ e´xq:

µ ď
1

m

n
ÿ

j“1

cpď

˜

1

n

n
ÿ

i“1

rXi ě Upj´1qn`is, n, δ

¸

, (C.56)

µ ě
1

m

n
ÿ

j“1

cpě

˜

1

n

n
ÿ

i“1

rXi ě Upj´1qn`is, n, δ

¸

. (C.57)

Note that this result is quite important since it represents the best known

bound for sum of r0, 1s-bounded random variables which does not exploits

moments of higher order (e.g. the variance).

Hoeffding’s Inequalities

The HIQ are very general results for sum of bounded random variables [118].

Let X “ r0, 1s. The proof of the HIQ is quite simple:
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PX1,¨¨¨ ,Xn tpµ´ µ ě tu (C.58)

“ PX1,¨¨¨ ,Xn

#

n
ÿ

i“1

Xi ´ nµ ě nt

+

, t P p0, 1´ µq (C.59)

ď EX1,¨¨¨ ,Xne
hp

řn
i“1Xi´nµ´ntq, h P R (C.60)

“ e´hntEX1,¨¨¨ ,Xn

!

eh
řn
i“1pXi´µq

)

(C.61)

“ e´hnt
n
ź

i“1

EXi
!

ehpXi´µq
)

(C.62)

“ e´hnte´nhµ
n
ź

i“1

EXi
 

ehXi
(

(C.63)

ď e´hnte´nhµ
n
ź

i“1

p1´ µ` µehq (C.64)

“ e´hnte´nhµp1´ µ` µehqn (C.65)

“
“

e´hte´hµp1´ µ` µehq
‰n

(C.66)

“

«

ˆ

1´ µ

´µ´ t` 1

˙´µ´t`1ˆ
µ

µ` t

˙µ`t
ffn

(C.67)

“ e´nklpµ`t,µq (C.68)

ď e´2nt2 , t P r0,8q. (C.69)

Note that:

• From Eq. (C.59) to Eq. (C.60) we have exploited Markov’s inequality;

• From Eq. (C.61) to Eq. (C.62) we have exploited the i.i.d. hypothesis;

• From Eq. (C.63) to Eq. (C.64) we have exploited the convexity of the

exponential function;

• From Eq. (C.66) to Eq. (C.67) we have optimized respect to h:

B
“

e´hte´hµp1´ µ` µehq
‰

Bh
“ 0, (C.70)

µehp´µq´ht`h ` pehµ´ µ` 1qp´µ´ tqe´hµ´ht “ 0, (C.71)

hÑ ln

„

pµ´ 1qpµ` tq

µpµ` t´ 1q



; (C.72)

• From Eq. (C.68) to Eq. (C.69) we have exploited Pinsker’s inequality.

By following the same argument it is possible to prove that:

PX1,¨¨¨ ,Xn tµ´ pµ ě tu ď e´2nt2 , t P r0,8q. (C.73)
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The two bounds can be presented in their explicit form and, with probability

p1´ e´xq, we obtain:

µ´ pµ ď

c

x

2n
, (C.74)

pµ´ µ ď

c

x

2n
. (C.75)

Note that HIQ imply also some tighter results (see Eq. (C.68)) which are often

less known because of their implicit form:

PX1,¨¨¨ ,Xn tpµ´ µ ě tu ď e´nklpµ`t,µq, t P p0, 1´ µq, (C.76)

PX1,¨¨¨ ,Xn tµ´ pµ ě tu ď e´nklp1´µ`t,1´µq, t P p0, µ´ 1q. (C.77)

The latter bounds are much tighter with respect to the conventional ones of

Eqns. (C.74) and (C.75) but a numerical routine is needed in order to compute

the upper or lower bounds of µ (by solving the problem with respect to µ [7])

or pµ. Note that recently in [36, 255] it has been shown that the bounds of

Eqns. (C.76) and (C.77) can be further improved by a constant factor. We do

not include this result since the results reported in Appendix C are tighter

with respect to the ones of [36, 255].

Taking Into Account Moments of Higher Order

The inequalities presented in the previous Appendixes (CPIQ and HIQ) are

the best known bounds that exploit information about the first moment of

the distribution (the mean value). Other results, which exploit moment of

higher order like the variance, have been proved in the past. In particular, by

following a slightly different proof with respect to the one presented for the

HIQ, it is possible to prove that:

PX1,¨¨¨ ,Xn tpµ´ µ ě tu ď e
´nkl

´

t`σ2

1`σ2
, σ2

1`σ2

¯

, t P p0, 1´ µq, (C.78)

PX1,¨¨¨ ,Xn tµ´ pµ ě tu ď e
´nkl

´

t`σ2

1`σ2
, σ2

1`σ2

¯

, t P p0, µ´ 1q. (C.79)

The proof can be retrieved from [36, 118]. By upper bounding the previous

results one can derive the Bernstein’s [38], Bennett’s [35] and Prohorov’s [215]

inequalities (refer to [118] for details). The bounds of Eqns. (C.78) and (C.79)

can be much tighter respect to their counterparts (Eqns. (C.76) and (C.77)).

In particular, by using rescaling and choosing the maximal possible variance

σ2 “ µp1 ´ µq, the bounds of Eqns. (C.78) and (C.79) degenerate into the
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ones of Eqns. (C.76) and (C.77). Moreover, the bounds of Eqns. (C.78) and

(C.79) can be further improved by a constant factor (see [36, 118]), but this

is out of our scope. The problem here it that the bounds of Eqns. (C.78) and

(C.79) cannot be empirically computed since σ2 is unknown.

In order to estimate σ2 we have to exploit a result from the literature [173,

175]. In particular, it is possible to prove that pσ2 is a SBF (see Appendix C);

therefore it is possible to state that:

PX1,¨¨¨ ,Xn

 

σ2 ´ pσ2 ě t
(

ď e´
pn´1qt2

2σ2 , t P r0,8q. (C.80)

Note that the above mentioned bound is not the sharpest one (see Appendix

C and [173, 175]) but for the purpose of our presentation the reported bound

is good enough. Moreover, we do not report the proof here because it is rather

technical and it is out of the scope of this Appendix, in any case, it can be

retrieved from [173, 175]. The bound of Eq. (C.80) allows to upper bound σ2

based on its empirical estimator pσ2. In particular, by exploiting Eq. (C.80)

we can state that with probability p1´ e´xq:

σ2 ´ pσ2 ď

c

2σ2x

n´ 1
. (C.81)

By solving it with respect to σ2, and by taking the largest solution, with

probability p1´ e´xq:

σ2 ď pσ2 `

c

2pσ2x

n´ 1
`

2x

n´ 1
. (C.82)

By plugging this last result into the bounds of Eqns. (C.78) and (C.79) we

get their empirical counterparts. When n is small the advantage of using the

bounds of Eqns. (C.78) and (C.79) with respect to the ones of Eqns. (C.76) and

(C.77) is wiped out by the estimation of σ2 through the bound of Eq. (C.82).

Instead, as n increases, Eq. (C.82) becomes tighter and the bounds of Eqns.

(C.78) and (C.79) still improve over the ones of Eqns. (C.76) and (C.77).

Unfortunately this effect becomes evident for really large n « 103 ˜ 104,

therefore the bounds of Eqns. (C.78) and (C.79) are often not taken into

account in practical applications [7].

Inequalities for functions of random variables

As described in Appendix C, sums of i.i.d. random variables can be close to

their expectation with a large probability. This appendix, instead, gives some
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results about how close general functions of i.i.d. random variables are from

their expected value. For this purpose we assume that tX1, ¨ ¨ ¨ , Xnu are n

i.i.d. random variables taking values in X and we report some preliminary

definitions. In particular we will denote with Z a function on n random vari-

ables

Z “ fpX1, ¨ ¨ ¨ , Xnq, f : Xn Ñ R. (C.83)

We will denote Zk the same function Z but where the k-th element Xk is

replaced with another one X 1k i.i.d. to Xk

Zk “fpX1, ¨ ¨ ¨ , Xk´1, X
1
k, Xk`1, ¨ ¨ ¨ , Xnq,

Xk, X
1
k i.i.d., k P t1, ¨ ¨ ¨ , nu . (C.84)

Finally we will denote with Gzk another function of n´ 1 variables defined as

tX1, ¨ ¨ ¨ , XnuzXk

Gzk “gpX1, ¨ ¨ ¨ , Xk´1, Xk`1, ¨ ¨ ¨ , Xnq,

g : Xn´1 Ñ R, k P t1, ¨ ¨ ¨ , nu (C.85)

We will make also use of some additional auxiliary mathematical functions

[196]

φpaq “ p1` aq lnp1` aq ´ a, a ą ´1, (C.86)

pφpaq “ 1´ exp

„

1`W´1

ˆ

a´ 1

e

˙

, φ
”

´pφpaq
ı

“ a, a P r0, 1s, (C.87)

φ̌paq “ exp

„

1`W0

ˆ

a´ 1

e

˙

´ 1, φ
“

φ̌paq
‰

“ a, a P r0,8q, (C.88)

where W´1 and W0 are, respectively, two solutions of the Lambert W function

[69]. Note also that [46]:

φpaq ě
a2

2` 2a
3

, a P r0,8s, (C.89)

φp´aq ě
a2

2
, a P r0, 1s. (C.90)

In the next sections of this appendix we will present some inequalities which

bound, with high probability, the difference between the random variable Z

and its expected value. The first inequalities, discovered by [181], are the ones

for Bounded Difference Functions reported in Section C. Then the ones for

Self Bounding Function have been proposed in [46] and then further refined
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for Generalized Self Bounding Functions in [48]. The latter are reported in

SectionsC and C respectively.

Generally speaking, the loosest inequalities are the ones of Appendix C, while

the sharpest one are those of Appendix C. The tightness of the inequali-

ties of Appendix C, instead, remarkably depends on the variance of Z: this

is the typical behaviour of the Bennet-type inequalities. Obviously, in or-

der to apply the inequalities of Appendix C, f must satisfy less restrictive

conditions respect when we want to apply the inequalities of Appendix C.

The inequalities of Appendix C require instead less restrictive conditions

with respect to the ones required by the inequalities of Appendix C but

more restrictive ones respect to the ones required by the inequalities of Ap-

pendix C. All the presented results are usually called CIQs. Several methods

have been proposed to prove such inequalities, including martingale meth-

ods [181, 182], information-theoretic methods [2, 74, 167–170, 222], induction

method [254, 256, 257], entropy method based on logarithmic Sobolev inequal-

ities [44, 46, 48, 154, 155, 171, 222], and various problem-specific methods

[125]. All these results have been recently surveyed in [47].

Bounded Difference Function Inequalities

The function Z is a BDF if it satisfies the following property [181]:

ˇ

ˇZ ´ Zk
ˇ

ˇ ď c, c P p0,8q, @k P t1, ¨ ¨ ¨ , nu . (C.91)

If Z is a BDF we can state that [181]:

PX1,¨¨¨ ,Xn tZ ´ EX1,¨¨¨ ,XntZu ą tu ď e
´2t2

nc2 , t P r0,8q, (C.92)

PX1,¨¨¨ ,Xn tEX1,¨¨¨ ,XntZu ´ Z ą tu ď e
´2t2

nc2 , t P r0,8q. (C.93)

The two above mentioned properties can be rewritten and we can state that

with probability p1´ e´xq:

Z ´ EX1,¨¨¨ ,XntZu ď

c

nc2x

2
, (C.94)

EX1,¨¨¨ ,XntZu ´ Z ď

c

nc2x

2
. (C.95)

(C.96)

In order to proceed with the proof, let us define the following random variable:
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Zi “ EX1,¨¨¨ ,XitfpX1, ¨ ¨ ¨ , Xnqu : Z0 “ Z, Zn “ EX1,¨¨¨ ,XntZu, (C.97)

and note that

Z ´ EX1,¨¨¨ ,XntZu “
n
ÿ

i“1

pZi´1 ´ Ziq . (C.98)

By construction we obtain:

EXitZi´1 ´ Ziu “ 0, (C.99)

and thanks to the fact that Z is a self bounding function we obtain:

Zi´1 ´ Zi ď c. (C.100)

Consequently by exploiting Hoeffding’s Lemma we can state that:

EX1,¨¨¨ ,Xi

!

ehpZi´1´Ziq
)

ď e
1
8h

2c2 . (C.101)

Based on these preliminary definitions we can state that:

PX1,¨¨¨ ,Xn tZ ´ EX1,¨¨¨ ,XntZu ą tu (C.102)

ď e´htEX1,¨¨¨ ,Xn

!

ehpZ´EX1,¨¨¨ ,Xn
tZuq

)

, t P r0,8q, h P R (C.103)

“ e´htEX1,¨¨¨ ,Xn

!

eh
řn
i“1pZi´1´Ziq

)

(C.104)

“ e´htEX1,¨¨¨ ,Xn

!

eh
řn
i“2pZi´1´ZiqEX1

!

ehpZ0´Z1q
))

(C.105)

ď e´hte
1
8h

2c2EX1,¨¨¨ ,Xn

!

eh
řn
i“2pZi´1´Ziq

)

(C.106)

ď e´hte
1
8nh

2c2 (C.107)

ď e
´2t2

nc2 (C.108)

where:

• In Eq. (C.103) we have exploited Markov’s inequality;

• From Eq. (C.103) to Eq. (C.104) we have exploited the property of Eq.

(C.98);

• From Eq. (C.105) to Eq. (C.106) we have exploited the property of Eq.

(C.101);

• From Eq. (C.106) to Eq. (C.107) we applied the induction hypotheses;

• From Eq. (C.107) to Eq. (C.108) we have optimized respect to h.

The proof for the other BDFIQ are analogous.
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Self Bounding Function Inequalities

The function Z is a SBF if it satisfies the following properties [46]:

Z ě 0, (C.109)

0 ď Z ´Gzk ď c, c P p0,8q, @k P t1, ¨ ¨ ¨ , nu , (C.110)
n
ÿ

k“1

”

Z ´Gzk
ı

ď Z. (C.111)

If Z is a SBF we can state that [46]:

PX1,¨¨¨ ,Xn tZ ´ EX1,¨¨¨ ,XntZu ě tu

ď e
´

EX1,¨¨¨ ,Xn
tZu

c φ

ˆ

t
EX1,¨¨¨ ,Xn

tZu

˙

ď e
´ t2

2cEX1,¨¨¨ ,Xn
tZu` 2

3
ct , t P r0,8q. (C.112)

The above mentioned result can be rewritten and we can state that with

probability p1´ e´xq:

Z ´ EX1,¨¨¨ ,XntZu ď EX1,¨¨¨ ,XntZuφ̌

ˆ

cx

EX1,¨¨¨ ,XntZu

˙

, (C.113)

Z ´ EX1,¨¨¨ ,XntZu ď
b

2cxEX1,¨¨¨ ,XntZu `
cx

3
. (C.114)

Moreover [46]:

PX1,¨¨¨ ,Xn tEX1,¨¨¨ ,XntZu ´ Z ě tu

ď e
´

EX1,¨¨¨ ,Xn
tZu

c φ

ˆ

´ t
EX1,¨¨¨ ,Xn

tZu

˙

ď e
´ t2

2cEX1,¨¨¨ ,Xn
tZu , t P r0,EX1,¨¨¨ ,XntZus, (C.115)

which can be rewritten and we can state that with probability p1´ e´xq:

EX1,¨¨¨ ,XntZu ´ Z ď EX1,¨¨¨ ,XntZu
pφ

ˆ

cx

EX1,¨¨¨ ,XntZu

˙

, (C.116)

EX1,¨¨¨ ,XntZu ´ Z ď
b

2cxEX1,¨¨¨ ,XntZu. (C.117)

In this case we do not report the proofs which is rather technical, but they

can be retrieved from [46].
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Generalized Self Bounding Function Inequalities

The function Z is a GSBF if it satisfies the following properties [48]:

Z 1k ď Z ´Gzk ď c, @k P t1, ¨ ¨ ¨ , nu , (C.118)

Z 1k ď c1, @k P t1, ¨ ¨ ¨ , nu , (C.119)

E
“

Z 1k
‰

ě 0, @k P t1, ¨ ¨ ¨ , nu , (C.120)
n
ÿ

k“1

”

Z ´Gzk
ı

ď Z. (C.121)

Let us define the following quantities:

u2 ě
1

c2n

n
ÿ

k“1

EX1,¨¨¨ ,Xn

“

Z 1k
‰2
, (C.122)

v “
1` nc1

c
EX1,¨¨¨ ,XntZu ` nu

2. (C.123)

If Z is a GSBF we can state that [48]:

PX1,¨¨¨ ,Xn tZ ´ EX1,¨¨¨ ,XntZu ě tu

ď e´vφp
t
cv q

ď e
´ t2

2c2v` 2
3
ct , t P r0,8q. (C.124)

The above mentioned result can be easily reformulated. In particular with

probability p1´ e´xq we have that:

Z ´ EX1,¨¨¨ ,XntZu ď cvφ̌
´x

v

¯

, (C.125)

Z ´ EX1,¨¨¨ ,XntZu ď
?

2c2xv `
cx

3
. (C.126)

Moreover [133, 134]:

PX1,¨¨¨ ,Xn tEX1,¨¨¨ ,XntZu ´ Z ě tu

ď e´vφp´
t
cv q

ď e´
t2

2c2v , t P r0,EX1,¨¨¨ ,XntZus. (C.127)

The above mentioned result can be rewritten and we can state that with

probability p1´ e´xq:

EX1,¨¨¨ ,XntZu ´ Z ď cvpφ
´x

v

¯

, (C.128)

EX1,¨¨¨ ,XntZu ´ Z ď
?

2c2xv. (C.129)

Here the proofs are not reported but they can be retrieved from [48, 133, 134].
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based on the rényi divergence. In International Conference on Artificial

Intelligence and Statistics, 2016.

[34] S. Ben-David, T. Lu, and D. Pál. Does unlabeled data provably help?

worst-case analysis of the sample complexity of semi-supervised learn-

ing. In computational learning theory, 2008.

[35] G. Bennett. Probability inequalities for the sum of independent random

variables. Journal of the American Statistical Association, 57(297):33–

45, 1962.

[36] V. Bentkus. On hoeffding’s inequalities. The Annals of Probability,

32(2):1650–1673, 2004.



124 REFERENCES

[37] D. Berend and A. Kontorovitch. Consistency of weighted majority votes.

In Neural Information Processing Systems, 2014.

[38] S. Bernstein. On a modification of chebyshev’s inequality and of the

error formula of laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math,

1(4):38–49, 1924.

[39] C. M. Bishop. Neural networks for pattern recognition. Oxford university

press, 1995.

[40] G. Blanchard and P. Massart. Discussion: Local rademacher complexi-

ties and oracle inequalities in risk minimization. The Annals of Statis-

tics, 34(6):2664–2671, 2006.

[41] A. Blum and M. Hardt. The ladder: A reliable leaderboard for ma-

chine learning competitions. In International Conference on Machine

Learning, 2015.

[42] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s

razor. Information processing letters, 24(6):377–380, 1987.

[43] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learn-

ability and the vapnik-chervonenkis dimension. Journal of the ACM,

36(4):929–965, 1989.

[44] S. G. Bobkov and M. Ledoux. On modified logarithmic sobolev inequal-

ities for bernoulli and poisson measures. journal of functional analysis,

156(2):347–365, 1998.

[45] C. E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilita.

Libreria internazionale Seeber, 1936.

[46] S. Boucheron, G. Lugosi, and P. Massart. A sharp concentration inequal-

ity with applications. Random Structures & Algorithms, 16(3):277–292,

2000.

[47] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A

nonasymptotic theory of independence. Oxford university press, 2013.

[48] O. Bousquet. A bennett concentration inequality and its application

to suprema of empirical processes. Comptes Rendus Mathematique,

334(6):495–500, 2002.

[49] O. Bousquet and A. Elisseeff. Stability and generalization. The Journal

of Machine Learning Research, 2:499–526, 2002.

[50] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[51] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.



REFERENCES 125

[52] A. Cannon, J. M. Ettinger, D. Hush, and C. Scovel. Machine learn-

ing with data dependent hypothesis classes. The Journal of Machine

Learning Research, 2:335–358, 2002.

[53] B. P. Carlin and T. A. Louis. Bayesian methods for data analysis. CRC

Press, 2008.

[54] G. Casella and R. L. Berger. Statistical inference. Duxbury Pacific

Grove, CA, 2002.

[55] O. Catoni. Pac-Bayesian Supervised Classification. Institute of Mathe-

matical Statistics, 2007.

[56] K. Chaudhuri and D. Hsu. Sample complexity bounds for differentially

private learning. In Conference on Learning Theory, 2011.

[57] K. Chaudhuri, D. J. Hsu, and S. Song. The large margin mechanism for

differentially private maximization. In Neural Information Processing

Systems, 2014.

[58] K. Chaudhuri and S. A. Vinterbo. A stability-based validation proce-

dure for differentially private machine learning. In Neural Information

Processing Systems, 2013.

[59] X. Chen. A link between binomial parameters and means of bounded

random variables. arXiv preprint arXiv:0802.3946, 2008.

[60] X. Chen. Multistage estimation of bounded-variable means. arXiv

preprint arXiv:0809.4679, 2008.

[61] V. Cherkassky. Model complexity control and statistical learning theory.

Natural computing, 1(1):109–133, 2002.

[62] V. Cherkassky and F. Mulier. Vapnik-chervonenkis (vc) learning theory

and its applications. IEEE Transactions on Neural Networks, 10(5):985–

987, 1999.

[63] V. Cherkassky and F. M. Mulier. Learning from data: concepts, theory,

and methods. John Wiley & Sons, 2007.

[64] V. Cherkassky, X. Shao, F. M. Mulier, and V. N. Vapnik. Model com-

plexity control for regression using vc generalization bounds. IEEE

Transactions on Neural Networks, 10(5):1075–1089, 1999.

[65] H. Chernoff. A measure of asymptotic efficiency for tests of a hypoth-

esis based on the sum of observations. The Annals of Mathematical

Statistics, 23(4):493–507, 1952.

[66] R. Christensen, W. Johnson, A. Branscum, and T. E. Hanson. Bayesian

ideas and data analysis: an introduction for scientists and statisticians.

CRC Press, 2011.



126 REFERENCES

[67] C. J. Clopper and E. S. Pearson. The use of confidence or fiducial limits

illustrated in the case of the binomial. Biometrika, pages 404–413, 1934.

[68] D. Corfield, B. Schölkopf, and V. N. Vapnik. Falsificationism and statis-

tical learning theory: Comparing the popper and vapnik-chervonenkis

dimensions. Journal for General Philosophy of Science, 40(1):51–58,

2009.

[69] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.

Knuth. On the lambert w function. Advances in Computational Math-

ematics, 5(1):329–359, 1996.

[70] C. Cortes, M. Kloft, and M. Mohri. Learning kernels using local

rademacher complexity. In Advances in Neural Information Process-

ing Systems, 2013.

[71] C. Cortes and V. N. Vapnik. Support-vector networks. Machine learn-

ing, 20(3):273–297, 1995.

[72] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE

transactions on information theory, 13(1):21–27, 1967.

[73] I. Csiszar and J. Körner. Information theory: coding theorems for dis-

crete memoryless systems. Cambridge University Press, 2011.

[74] A. Dembo. Information inequalities and concentration of measure. The

Annals of Probability, 25(2):927–939, 1997.

[75] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern

recognition. Springer, 1996.

[76] L. Devroye and T. Wagner. Distribution-free inequalities for the deleted

and holdout error estimates. IEEE Transactions on Information Theory,

25(2):202–207, 1979.

[77] V. Dhar. Data science and prediction. Communications of the ACM,

56(12):64–73, 2013.

[78] R. Dietrich, M. Opper, and H. Sompolinsky. Statistical mechanics of

support vector networks. Physical review letters, 82(14):2975, 1999.

[79] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain

markov process expectations for large time, i. Communications on Pure

and Applied Mathematics, 28(1):1–47, 1975.

[80] N. R. Draper, H. Smith, and E. Pownell. Applied regression analysis.

Wiley New York, 1966.

[81] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. N. Vapnik.

Support vector regression machines. In Advances in neural information

processing systems, 1997.



REFERENCES 127

[82] C. Dwork. Differential privacy: A survey of results. In International

Conference on Theory and Applications of Models of Computation, 2008.

[83] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth.

Generalization in adaptive data analysis and holdout reuse. In Neural

Information Processing Systems, 2015.

[84] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth.

Preserving statistical validity in adaptive data analysis. In Annual ACM

Symposium on Theory of Computing, 2015.

[85] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth.

The reusable holdout: Preserving validity in adaptive data analysis. Sci-

ence, 349(6248):636–638, 2015.

[86] C. Dwork and J. Lei. Differential privacy and robust statistics. In

Annual ACM Symposium on Theory of computing, pages 371–380, 2009.

[87] C. Dwork and A. Roth. The algorithmic foundations of differential

privacy. Foundations and Trends in Theoretical Computer Science, 9(3-

4):1–277, 2014.

[88] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differen-

tial privacy. In IEEE Annual Symposium on Foundations of Computer

Science, 2010.

[89] B. Efron. The jackknife, the bootstrap and other resampling plans.

SIAM, 1982.

[90] B. Efron. Bootstrap methods: another look at the jackknife. In Break-

throughs in statistics, 1992.

[91] B. Efron and R. J. Tibshirani. An introduction to the bootstrap. CRC

press, 1994.

[92] R. El-Yaniv and D. Pechyony. Transductive rademacher complexity and

its applications. Journal of Artificial Intelligence Research, 35(1):193,

2009.

[93] A. Elisseeff, T. Evgeniou, and M. Pontil. Stability of randomized learn-

ing algorithms. Journal of Machine Learning Research, 6:55–79, 2005.

[94] V. Feldman and D. Xiao. Sample complexity bounds on differentially

private learning via communication complexity. In Conference on Learn-

ing Theory, 2014.

[95] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we

need hundreds of classifiers to solve real world classification problems.

Journal of machine learning research, 15(1):3133–3181, 2014.



128 REFERENCES

[96] S. Floyd and M. Warmuth. Sample compression, learnability, and the

vapnik-chervonenkis dimension. Machine learning, 21(3):269–304, 1995.

[97] M. R. Forster. Notice: No Free Lunches for Anyone, Bayesians Included.

University of Wisconsin-Madison Madison Department of Philosophy,

2005.

[98] L. Friedland, D. Jensen, and M. Lavine. Copy or coincidence? a model

for detecting social influence and duplication events. In International

Conference on Machine Learning, 2013.

[99] A. Friedman and A. Schuster. Data mining with differential privacy. In

ACM international conference on Knowledge discovery and data mining,

2010.

[100] K. Fukunaga and D. M. Hummels. Leave-one-out procedures for non-

parametric error estimates. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 11(4):421–423, 1989.

[101] S. Geisser and W. O. Johnson. Modes of parametric statistical inference,

volume 529. John Wiley & Sons, 2006.

[102] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data

analysis, volume 2. Taylor & Francis, 2014.

[103] P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. Pac-bayesian

learning of linear classifiers. In International Conference on Machine

Learning, 2009.

[104] P. Germain, A. Lacasse, F. Laviolette, M. Marchand, and J. F. Roy. Risk

bounds for the majority vote: From a pac-bayesian analysis to a learning

algorithm. The Journal of Machine Learning Research, 16(4):787–860,

2015.

[105] P. Germain, A. Lacoste, M. Marchand, S. Shanian, and F. Laviolette.

A pac-bayes sample-compression approach to kernel methods. In Inter-

national Conference on Machine Learning, 2011.

[106] M. Gönen and E. Alpaydın. Multiple kernel learning algorithms. Journal

of machine learning research, 12:2211–2268, 2011.

[107] S. Gopal, B. Bai, Y. Yang, and A. Niculescu-Mizil. Bayesian models for

large-scale hierarchical classification. In Neural Information Processing

Systems, 2013.

[108] S. Greengard. Privacy matters. Communications of ACM, 51(9):17–18,

2008.

[109] P. D. Grünwald. The minimum description length principle. MIT press,

2007.



REFERENCES 129

[110] I. Guyon, A. Saffari, G. Dror, and G. Cawley. Model selection: Beyond

the bayesian/frequentist divide. Journal of Machine Learning research,

11:61–87, 2010.

[111] L. Györfi, M. Kohler, A. Krzyzak, and H. Walk. A distribution-free

theory of nonparametric regression. Springer Science & Business Media,

2006.

[112] J. B. S. Haldane. A note on inverse probability. Mathematical Proceed-

ings of the Cambridge Philosophical Society, 28(1):55–61, 1932.

[113] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques.

Elsevier, 2011.

[114] M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm

for differentially private data release. In Neural Information Processing

Systems, 2012.

[115] M. Hardt and J. Ullman. Preventing false discovery in interactive data

analysis is hard. In IEEE Annual Symposium on Foundations of Com-

puter Science, 2014.

[116] J. Harold. An invariant form for the prior probability in estimation

problems. Proceedings of the Royal Society of London. Series A, Math-

ematical and Physical Sciences, 186(1007):453–461, 1946.

[117] R. Herbrich and T. Graepel. A pac-bayesian margin bound for lin-

ear classifiers. IEEE Transactions on Information Theory, 48(12):3140–

3150, 2002.

[118] W. Hoeffding. Probability inequalities for sums of bounded random

variables. Journal of the American statistical association, 58(301):13–

30, 1963.

[119] A. Inoue and L. Kilian. In-sample or out-of-sample tests of predictabil-

ity: Which one should we use? Econometric Reviews, 23(4):371–402,

2005.

[120] J. P. A. Ioannidis. Why most published research findings are false. PLoS

medicine, 2(8):e124, 2005.

[121] K. E. Iverson. A programming language. In ACM spring joint computer

conference, 1962.

[122] P. Jain, P. Kothari, and A. Thakurta. Differentially private online learn-

ing. In Conference on Learning Theory, 2012.

[123] P. Jain and A. Thakurta. Differentially private learning with kernels.

In International Conference on Machine Learning, 2013.



130 REFERENCES

[124] P. Jain and A. G. Thakurta. (near) dimension independent risk bounds

for differentially private learning. In International Conference on Ma-

chine Learning, 2014.

[125] S. Janson, T. Luczak, and A. Rucinski. Random graphs. John Wiley &

Sons, 2011.

[126] J. L. W. V. Jensen. Sur les fonctions convexes et les inégalités entre les
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