
Train Overtaking Prediction
in Railway Networks: a Big Data Perspective

Luca Oneto1, Irene Buselli1, Alessandro Lulli1,
Renzo Canepa2, Simone Petralli2, and Davide Anguita1

1 DIBRIS, University of Genoa, Via Opera Pia 13, I-16145, Genoa, Italy,
(email: {luca.oneto, irene.buselli, alessandro.lulli, davide.anguita}@unige.it)

2 Rete Ferroviaria Italiana S.p.A., Via Don Vincenzo Minetti 6/5, I-16126, Genoa,
Italy (email: {r.canepa, s.petralli}@rfi.it)

Abstract. Every time two or more trains are in the wrong relative po-
sition on the railway network because of maintenance, delays or other
causes, it is required to decide if, where, and when to make them over-
take. This is a quite complex problem that is tackled every day by the
train operators exploiting their knowledge and experience since no effec-
tive automatic tools are available for large scale railway networks. In this
work we propose a train overtaking hybrid prediction system. Our model
is hybrid in the sense that it is able to both encapsulate the experience
of the operators and integrate this knowledge with information coming
from the historical data about the railway network using state-of-the-art
data-driven techniques. Results on real world data coming from the Ital-
ian railway network will show that the proposed solution outperforms
the fully data-driven approach and could help the operators in timely
identify and schedule the best train overtaking solution.

Keywords: Railway Network, Train Overtaking, Big Data, Data-Driven
Models, Hybrid Models.

1 Introduction

Railway Transportation Systems (RTSs) play a vital and crucial role in pub-
lic mobility and goods delivery. In Europe the increasing volume of people and
freight transported on railway is congesting the network [5]. The only fast and
economically viable way to increase capacity is then to improve the efficiency of
daily operations in order to be able to control a larger number of running trains
without requiring massive public investments in new physical assets [23]. For this
reason, in the last years, every actors of the RTSs has started extensive mod-
ernization programs that leverage on advanced information and communication
solutions. The objectives are to improve system safety and service reliability, to
enhance passenger experience, to provide higher transit capacity and to reduce
operational costs.

In this work we focus on the problem of analyzing the train movements in
Large-Scale RTSs for the purpose of understanding and predicting their be-
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haviour. In particular, we will study the problem of the train overtaking pre-
diction exploiting data-driven solutions leveraging on the huge amount of data
produced and stored by the new RTSs information systems. Train overtaking
prediction is the problem of predicting when it is required or preferable to make
a train perform an overtaking in order to minimize the train delays and the
penalty costs associated with them. The study of this problem allows to improve
the quality of service, the train circulation, and the Infrastructure Managers and
Train Operators management costs.

A large literature covering the prediction problems related to the train cir-
culation already exists [10]. However, in general, the majority of the works fo-
cus on different problems: the running time prediction, the dwell time predic-
tion, and the train delay prediction. These focus on predicting, respectively,
the amount of time needed to traverse a section of railway between two check-
points [1, 6, 11, 13, 15, 17], the amount of time spent in a checkpoint and the
difference between the actual arrival (or departing time) and the scheduled one
in each of the stations composing the itinerary of a train [2,3,9,12,14,19,20,24].

The problem of train overtaking prediction, instead, has never been studied
exploiting data-driven solutions. Current solutions model this problem as a com-
plex optimization task [7,8,16] that is usually not easy to solve (or impossible to
solve in large scale railway networks) and requires a lot of human effort during
the modeling phase. For this reason, in practice, the current solution is to rely
on the experience of the operators and on their knowledge of the network. We
call this solution Experience-Based Model (EBM). A solution that we proposed
here is to adopt a data-driven approach. In this framework, advanced analytic
methods [10, 13] can be exploited to analyze the historical data and to build
Data-Driven Models (DDMs) which automatically predicts when it is better to
perform the train overtaking. Unfortunately, also DDMs have their drawbacks
since they do not handle easily the fact that prior knowledge about the problem
may be available, apart from the historical data. For this reason, in this work, we
propose an hybrid approach to the train overtaking prediction problem mixing
together the EBMs and DDMs taking inspiration from our previous works, where
we employed a similar idea to deal with the running time, the dwell time and
the train delay prediction problems [18]. The combination of the two approaches
allows us to create a model that shows the strengths of both EBMs and DDMs
while limiting their weaknesses. On one hand, encapsulating the experience of
the operators enables the creation of an interpretable and robust model which
can be better exploited in a human-oriented environment like the one of the train
operators. On the other hand, the exploitation of data-driven techniques allows
to build more accurate predictive models. Results on real world data about the
Italian railway network provided by Rete Ferroviaria Italiana (RFI - the Italian
Infrastructure Manager) will show the effectiveness of our proposal.
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2 The Train Overtaking Prediction Problem

In this section we introduce the notation needed to formally describe the prob-
lem of train overtaking. A railway network can be easily described with a graph.
Figure 1 depicts a simplified railway network where two trains follow their
itineraries. Let us consider the train at the station CB, characterized by its
itinerary (origin at station CA, destination at station CF, some stops and some
transits). In the following, we will call checkpoint a station without differentiat-
ing where the train stops or transits and between actual stations and points of
measure. The railway sections are the pieces of the network between two con-
secutive checkpoints and have also an orientation (e.g. transit from CD to CE is
different from transit from CE to CD).

CA

CB

CC

CD CE

CF

CH

CJ

CI

CG

* Train TA TB

tsa(*,CD) 10:40 10:55

tsd(*,CD) 10:44 10:55

taa(*,CD) 10:57 10:55

tad(*,CD) ? ?

Itinerary TA

Itinerary TB

? ?

Fig. 1. Train Overtaking.

For any checkpoint C in the itinerary, the train T is scheduled to arrive and
depart at different specified times, defined in the timetable, respectively, tsa(T,C)
and tsd(T,C). The difference between the actual time (either for arrival taa(T,C)
or for departure tad(T,C)) and the scheduled time is defined as train delay. Each
train and checkpoint have additional characteristics such as an unique identifier,
the category of the train, and the category of the railway network. However, due
to delays caused by many different reasons, it is common that two trains are in
a wrong relative position along their itinerary.

Let us refer again to Figure 1 for a graphical description of the problem.
In our scenario, we say that two trains are in a wrong relative position at a
checkpoint CD when tsa(TA, CD) < tsa(TB , CD) and taa(TA, CD) > taa(TB , CD),
i.e. TA is expected to arrive before TB in checkpoint CD but, for some reason,
train TB arrives before train TA in checkpoint CD.

When an event like this occurs it is required to predict and enforce as soon as
possible, with an overtake, the correct relative position of the trains for the pur-
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pose of minimizing delays and deviations from the timetable. In order to enforce
the overtake it is necessary to predict what is the best subsequent station in the
itinerary to perform the overtake minimizing the deviation from the timetable.
Note that not all the checkpoints allow the overtake (e.g. no additional track is
available to perform the overtake in all the checkpoints).

In the example of Figure 1, the system detects the incorrect position in check-
point CD because train TA is scheduled to arrive before train TB on checkpoint
CD, but train TA has a delay and, for this reason, train TB arrives before train
TA in checkpoint CD. After the detection of the incorrect relative position, the
system starts evaluating if and when, on the current or subsequent checkpoints
in common between the itineraries of train TA and TB, it is preferable to make
train TA overtake train TB.

3 Our Proposal: an Hybrid Model

In this work, we propose an HM to tackle the train overtaking prediction prob-
lem. In particular, we mapped the problem of overtaking into a series of binary
classification problems where the task is to predict if or not an overtake will be
performed at a particular checkpoint. The idea is to leverage on both the expe-
rience of the operators (EBM) and historical data with the use of advanced data
analytics methods (DDM). The goal is to build an accurate, dynamic, robust,
and interpretable model able to support the decision of the operators.

For this purpose we propose a two level architecture. At the top level, we
construct a tree following the suggestions of the operators, which captures the
characteristics of the two trains under consideration for the overtake and addi-
tional information to better describe the scenario under examination. Such top
level tree encapsulates the EBM developed by the operators during the years.
At the bottom level, for each of the leaves composing the tree we have built
a dataset with all the past occurrences of the overtake corresponding to that
particular leaf. This dataset is richer, in terms of feature set, with respect to the
top level tree and, leveraging on this we have built a DDM able to improve the
accuracy of the top level tree.

More in detail, the top level decision tree encapsulates the experience of the
operators in taking decisions when two trains are in the wrong relative position
and one has to overtake the other (see Section 2). The proposed HM groups
all the possible situations in subgroups based on a series of similarity variables
(see Table 1), defined together with the RFI experts, which allow us to have, on
one side, robust statistics, thanks to the possibility to learn from a reasonable
group of similar overtake situations and, on the other side, a rich feature set,
able to capture the variability of the phenomena. Then, in each leaf of this tree,
we exploit a DDM able to learn from the historical data in that particular leaf,
based on a super-set of features with respect to the one used in the tree (see
Table 2). In particular, each leaf is a Random Forest (RF) classifier [4] (following
the experience of the DDM developed in [21]), which predicts if the trains will
perform the overtake in a particular checkpoint. The whole HM is built and
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updated incrementally as soon as new train movements are recorded. During
the prediction phase, instead, we just visit the tree considering the particular
overtake situation and we exploit the corresponding RF classifier to make the
actual prediction.

Table 1. HM top level decision tree feature set (Cat. means Categorical)

Feature Name Cat. Description

Railway Section Yes The considered railway section

Railway Checkpoint Yes The considered railway checkpoint

Train Type Yes The considered Train Type

Daytime No The time of the day with an hourly granularity

Weekday Yes The day of the week

Last Delay No The last known delay with the following granularity in minutes
([0, 2], (2, 5], (5, 10], (10, 20], (20, 30], (30, 60], (60, 120], (120,∞));

Weather Conditions Yes The weather conditions (Sunny, Light Rain, Heavy Rain, Snow).

Table 2. HM bottom level RF feature set (Cat. means Categorical).

Feature Name Cat. Description

Weather Informa-
tion

Yes Weather conditions (Sunny, Light Rain, etc.) in all the checkpoints
of the train itinerary (for the already traveled checkpoints we use
the actual weather while for the future checkpoints we use the
predicted weather conditions)

Past Train Delays No Average value of the past Train Delays in seconds & Last known
Train Delay

Past Dwell Times No Average value of the past differences between actual and scheduled
Dwell Times in seconds & Last known difference between actual
and scheduled Dwell Time

Past Running
Times

No Average value of the past differences between actual and sched-
uled Running Times in seconds & Last known difference between
actual and scheduled Running Time

Network Congestion No Number of trains traversing the checkpoints of the train itinerary
in a slot of 20 minutes around the actual and scheduled times
respectively for the past and future checkpoints

Network Congestion
Delays

No Average Train Delay of the trains traversing the checkpoints of
the train itinerary in a slot of 20 minutes around the actual and
scheduled times respectively for the past and future checkpoints

4 Experimental Evaluation

In this section we will perform an extensive evaluation of the proposed HM to
show its effectiveness based on real world data coming from the Italian railway
network and provided by RFI. We will prove the effectiveness of our approach
by using, as a baseline, a fully DDM based on the one derived in [18, 21] for
predicting delays, transit time, and dwell time.
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4.1 The Available Data

The experiments have been conducted exploiting the real data provided by RFI
about the Italian railway network3. In particular, RFI has provided

– data about train movements which contains the following information: Date,
Train ID, Checkpoint ID, Actual Arrival Time, Arrival Delay, Actual De-
parture Time, Departure Delay and Event Type. The Event Type field can
assume different values: Origin (O), Destination (D), Stop (F), Transit (T);

– timetables, including planning of exceptional trains, and cancellations.

For the purpose of this work, RFI provided the access to the data of 12 months
(the whole 2016 solar year) of train movements of one critical (in the sense
that many overtakes need to be planned every day) Italian region. The data are
relative to more than 3.000 trains and 200 checkpoints. The dataset contains
5.000.000 train movements.

For improving the quality of the predictors, we also exploited as exogenous in-
formation, with a Big Data oriented approach, the weather data coming weather
stations in the area, freely available from the Italian weather services [22]. For
each checkpoint we consider the closest weather station. Then we collected the
historical data relative to the solar radiation and precipitations for the same time
span. From this data it is possible to extract both the actual and the forecasted
weather conditions (Sunny, Rain, Heavy Rain, and Snow).

4.2 Our baseline: a Data Driven Model

In order to better understand the potentiality and effectiveness of our HM we
decided to use a purely DDM as a baseline. The DDM has been constructed
removing the top level tree structure of HM described in Section 3, which models
the experience of the operators, and by building a single DDM based on the whole
set of available data and the features reported in Table 2. By removing the top
level structure of the HM we basically remove from the HM the experience of the
operators resulting in a fully DDM. Instead of creating sub-groups of overtake
situations sharing similar characteristics like in the HM, we leave to the DDM
the task to learn everything from the historical data and perform the predictions.

A comparison with a fully EBM could not be performed since the Italian
RTS information system does not store the prediction made by the operators,
who just rely on their intuition and experience.

4.3 Results

We start this analysis showing which checkpoints were involved in the most and
the least number of overtakings in 2016, and the number of overtakings identified
by the HM and the DDM. Table 3 depicts the 5 checkpoints in which the most
and least number of overtakes happened.

From Table 3 we can observe that:
3 We cannot report all the details because of confidentiality issues.
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Table 3. The checkpoints having the most and least number of overtakes in 2016.

Most Overtaking

Checkpoint Name Real HM DDM

Checkpoint A 624 518 378

Checkpoint B 273 248 226

Checkpoint C 220 211 152

Checkpoint D 188 206 185

Checkpoint E 177 168 164

Least Overtaking

Checkpoint Name Real HM DDM

Checkpoint F 17 0 1

Checkpoint G 14 12 11

Checkpoint H 13 2 2

Checkpoint I 11 1 3

Checkpoint L 10 2 0

– the 3 checkpoints which had the highest number of overtakes account for
around the 50% of the total overtaking happened in 2016 in the area under
examination;

– HM predictions are close to the real one;
– in general HM underestimates the number of overtakings, which is expected

because the model requires a certain number of historical data before starting
to work correctly;

– The DDM underestimates even more the overtakes in each checkpoint, re-
flecting that the amount of data required to learn how to correctly predict
an overtake is larger.

It is possible to make use of the information of Table 3 in order to identify
in which checkpoints it is possible an overtake. In fact the DDM need to learn
this information directly from the data while, in the HM, we can exploit the
experience of the operators and plug this information directly in the model.
In the Italian RTS, overtakes are not possible in all the checkpoints, and, in
the area under examination, only in 48 checkpoints it is possible to perform an
overtaking.

At this point we are ready to show the precision of the HM in identifying
the overtakings. Tables 4 and 5 depict the confusion matrix of, respectively,
the DDM and the HM. We reported also the confusion matrices relative to the
different typologies of trains. From Tables 4 and 5 we can observe that:

– the HM clearly outperforms the DDM;
– the HM is highly accurate in predicting when two trains must not swap their

positions;
– freight trains are the ones which perform the least number of overtakes and

also the ones affected by the largest error;
– high speed trains are the ones which perform the highest number of overtakes

and the ones in which the HM performs the least number of false-positive
and false-negative predictions.

Finally, Figure 4.3 reports the accuracy of the HM and the DDM in detecting
overtakings during the whole 2016. We report both the overall accuracy and the
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Table 4. Confusion matrices for the
overtakes predicted by the DDM (ALL:
all trains. REG: regional trains. HS: high
speed trains. FRE: freight trains).

ALL Yes No

Yes 2246 893

No 639 12657

REG Yes No

Yes 1082 476

No 347 7870

HS Yes No

Yes 1055 307

No 175 2599

FRE Yes No

Yes 109 110

No 117 2188

Table 5. Confusion matrices for the
overtakes predicted by the HM (ALL: all
trains. REG: regional trains. HS: high
speed trains. FRE: freight trains).

ALL Yes No

Yes 2355 783

No 500 12827

REG Yes No

Yes 1121 436

No 318 7899

HS Yes No

Yes 1112 250

No 103 2671

FRE Yes No

Yes 122 97

No 79 2226

recall (actual overtakes in a checkpoint correctly predicted). From Figure 4.3 we
can observe that:

– it is required 1 month of data to have a fully operational HM while the DDM
requires more data.

– in general the HM shows higher accuracy with respect to the DDM and this
advantage is costant over the whole year.

5 Conclusion

In this work we dealt with the problem of understanding and predicting the
train overtakes. For this purpose, we exploited an hybrid approach which is
able to encapsulate in one single model the knowledge about the network, the
experience of the operators, the historical data, and other exogenous variables
taking inspiration from the state-of-the-art approaches in this field of research.
The result is a dynamic, interpretable and robust hybrid data analytics system
able to handle non recurrent events, changes in the behaviour of the network,
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and to consider complex and exogenous information like weather information.
Basically, the proposed approach preserves the strengths of the experience based
methods and the data-driven methods and limits their weaknesses. Results on
real world data coming from the Italian railway network show that the proposed
solution provides remarkable results in addressing the train overtakes prediction
problem.
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