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Abstract— We investigate the problem of analyzing the train
movements in Large-Scale Railway Networks for the purpose
of understanding and predicting their behaviour. We focus
on different important aspects: the Running Time of a train
between two stations, the Dwell Time of a train in a station, the
Train Delay, and the Penalty Costs associated to a delay. Two
main approaches exist in literature to study these aspects. One
is based on the knowledge of the network and the experience
of the operators. The other one is based on the analysis of the
historical data about the network with advanced data analytics
methods. In this paper, we will propose an hybrid approach
in order to address the limitations of the current solutions.
In fact, experience-based models are interpretable and robust
but not really able to take into account all the factors which
influence train movements resulting in low accuracy. From the
other side, Data-Driven models are usually not easy to interpret,
nor robust to infrequent events, and require a representative
amount of data which is not always available if the phenomenon
under examination changes too fast. Results on real world data
coming from the Italian railway network will show that the
proposed solution outperforms both state-of-the-art experience
and Data-Driven based systems in terms of interpretability,
robustness, ability to handle non recurrent events and changes
in the behaviour of the network, and ability to consider complex
and exogenous information.
Index Terms— Railway Network, Train Movements, Running
Time, Dwell Time, Train Delays, Penalty Costs, Experience-
Based Models, Data-Driven Models, Hybrid Models, Inter-
pretable Models

I. INTRODUCTION

Railway Transport Systems (RTSs) play a crucial role in
servicing the global society and the transport backbone of a
sustainable economy. A well functioning RTS should met the
requirements defined in the form of the 7R formula [1], [2]:
Right Product, Right Quantity, Right Quality, Right Place,
Right Time, Right Customer, and Right Price. Therefore, an
RTS should provide: (i) availability of appropriate products
(the provisioning of different categories of train), (ii) proper
number of executed transportation tasks (enough trains to
fulfill the request), (iii) proper quality of execution of
transportation tasks (safety, correct scheduling, and effective
conflicts resolution), (iv) right place of destination according
to a timetable (correct transportation routes), (v) appropriate
lead time (reduced Train Delays), (vi) appropriate recipients
(focused on different customer needs and requirements), and
(vii) appropriate price (both from the point of view of the
customers and the infrastructure managers).

Alessandro Lulli, Luca Oneto, and Davide Anguita are with the DIBRIS,
University of Genoa, Via Opera Pia 13, I-16145, Genoa, Italy (email:
{alessandro.lulli,luca.oneto,davide.anguita}@unige.it). Renzo Canepa and
Simone Petralli is with Rete Ferroviaria Italiana S.p.A., Via Don Vincenzo
Minetti 6/5, I-16126, Genoa, Italy (email: {r.canepa,s.petralli}@rfi.it).

In this work we focus on the problem of analyzing the
train movements in Large-Scale RTSs for the purpose of
understanding and predicting their behaviour. Hence, we will
study four important aspects: the Running Time, the Dwell
Time, the Train Delay, and the Penalty Costs. The first one
is the amount of time a train spends in travelling between
two consecutive stations. The second one is the amount
of time a train spends in a station. The third one is the
difference between the actual arrival (or departing time) and
the scheduled one in each of the stations composing the
itinerary of a train. Finally, the fourth one is the penalty that
the Infrastructure Managers (IMs) and the Train Operators
(TOs) have to pay because of the delays in proportion
to their responsibilities. These aspects are of paramount
importance in the context of an RTS. Study them, and
being able to predict their behaviour, allows to improve the
quality of service, the train circulation, and the IMs and TOs
management costs. More specifically, in relation with the 7R
formula, it allows to improve the Right Quantity (improving
circulation improves the network capacity without requiring
massive public investments in new physical assets), the Right
Quality (it helps the operators to understand how much a train
needs from one checkpoint to another, to provide a timely
resolution of the conflicts on the network and, to correctly
schedule all the trains), the Right Time (efficiently predict the
train transits improves the ability of the operators to maintain
the correct train circulation), and the Right Price (it helps to
minimize the penalties for the IMs and TOs).

A large literature covering the aforementioned problems
already exists [3]. However, the majority of the works focus
just on a single aspect of the train movements. The Running
Time and Dwell Time have been exploited mainly to retrieve
train positions and track occupations [4], [5], or to detect
train conflicts [6], or to perform a correct dispatching [7]–[9].
The Train Delay prediction is the most investigated aspect
of train movements [10]–[17]. Some works study how the
Train Delays propagate in subsequent stations [18], for online
track conflict predictions [15], and for deriving dependencies
between trains [19], [20]. For what concern the study and the
prediction of the Penalty Costs in [21] it has been studied
the relation between Penalty Costs and Train Delays in the
Britain’s railway.

To the best knowledge of the authors, there is no work
in the literature which deals comprehensively with all the
aspects of the train movements as we will propose in this
work.

From a methodological point of view, the models adopted
in literature to solve the train movements related problems



can be grouped in two categories [3]. Models in the first
category, called Experience-Based Models (EBMs), attempt
to exploit the knowledge of the network in order to derive a
model which takes into account the physical characteristics
and limitations of the network (e.g. speed limits, usury,
and slopes) and the trains (e.g. acceleration, weight, and
number of wagons) together with the experience of the
operators [3], [15], [19], [22]–[24]. Models in the second
category, called Data-Driven Models (DDMs), are based
on the analysis of the historical data about the network
coming from the most recent Railway Information System
with advanced analytic methods [3], [5], [25]. Both EBMs
and DDMs have strengths and weaknesses. EBMs are usually
low computational demanding, easy to interpret, and robust.
A the same time, EBMs are usually not very accurate, hard
to modify in order to contemplate complex phenomena (e.g.
congestion of the network and weather conditions), and
not dynamic (they tents to oversimplify the phenomenon
not taking into account behaviour’s drifts). On the other
side, DDMs are much more accurate but they are also
much more computational demanding (at least for building
them and sometimes also for making predictions), often not
easy to interpret (interpretability in learning from data is
a crucial issue nowadays), not really robust (they do not
handle well infrequent events), and not very dynamic (if the
phenomena under examination change too fast with respect
to the possibility to collect enough data about it).

For this reasons, in this work we propose an hybrid
approach, that we will call Hybrid Model (HM), taking the
best from EBMs and DDMs. In particular, the proposed HM
will be interpretable (the HM will be easy to understand
from an operator point of view), robust and dynamic (HM
will handle well both infrequent events, like the passage
of Freight trains, and fast changes of the train movements
phenomena, like a timetable modification), easily extensible
(it will be able to take into account complex phenomena
like the congestion of the network and exogenous factors
like the weather conditions), and able to take into account
the knowledge about the network and the experience of the
operators.

The rest of the paper is organized as follows. Section II
describes the RTS train movements related problems. Sec-
tion III focuses the attention on the particular case of the
Italian RTS. Section IV presents the actual EBM and DDM
exploited in the Italian RTS. In Section V we present
our contribution: the HM. In Section VI we compare the
performance of the HM against the EBM and the DDM on a
set of real world data provided by Rete Ferroviaria Italiana
(the Italian IM) showing the effectiveness of the proposed
approach both in terms of dynamicity, interpretability, and
robustness. Section VII concludes the paper.

II. PROBLEM DESCRIPTION

A railway network can be easily described with a graph.
Figure 1 depicts a simplified railway network where a train
follows an itinerary characterized by a station of origin
(station A), a station of destination (station F), some stops

Fig. 1. A railway network. The itinerary of a train is depicted with the
grey nodes where A is the origin station and F is the destination.

Fig. 2. Running Time and Dwell Time.

(stations A, D, and F) and some transits (checkpoints B, C,
and E).

We call checkpoint a station without differentiating be-
tween a station where the train stops or transits and between
actual stations and points of measure. In fact, not all check-
points are actual stations since in long railway sections it is
often needed to add a point of measure for following the
trains with a better granularity.

The railway sections are the pieces of the network between
two consecutive checkpoints, note that railway sections have
also an orientation (e.g. transit D to E is different from transit
E to D).

For any checkpoint in the itinerary, the train is scheduled
to arrive and depart at different specified times, defined in the
timetable, respectively tsa and tsd. Usually, the time references
included in the timetable are approximated with a precision
of 30s. The difference between the scheduled time and the
actual time, either for arrival (taa) or for departure (tad), is
defined as Train Delay. If the delay is greater than 30s, then
a train is considered as delayed. Note that, for the origin
station there is no arrival time, while for the destination
station there is no departure time. We define the Running
Time as the amount of time needed to depart from the first
of two subsequent checkpoints and to arrive to the second
one (see Figure 2, for railway section D to E the scheduled
Running Time is tsa(E) − tsd(D) while the actual Running
Time is taa(E)− tad(D)) and the Dwell Time is the difference
between the departure time and the arrival time in a fixed
checkpoint (see Figure 2, in checkpoint D the scheduled
Dwell Time is tsd(D) − tsa(D) and the actual Dwell Time is
tad(D)− taa(D)).

Furthermore, each train has an unique identifier from
which it is possible to retrieve the category of the train
(e.g. Regional, Freight, and High Speed). Analogously, each
checkpoint has an unique identifier from which it is pos-
sible to retrieve the category of the network (e.g. Node,



High Speed, and Second Complementary Network). Train,
network category, time of the day, and other factors allow to
compute the Penalty Costs associated to a delayed train.

Based on these definitions, it is possible to describe the
train movements related prediction problems that we will
face in this work.

A. Running Time and Dwell Time Prediction
The prediction of the Running Time and Dwell Time are

the first problems that we address. For a specific train, the
problem is to predict the Running Time for all the subsequent
railway sections it will traverse and the Dwell Time for all
the subsequent checkpoints in which it will stop, updating
these predictions every time it reaches the next checkpoint.
Providing an accurate prediction of the Running Time and
the Dwell Time allows to provide to the operators a clear
understanding of how much time a train needs to complete
the itinerary. Moreover, as we will describe later, the Running
Time and the Dwell Time predictions can be exploited as a
building block for the Train Delay predictors (see the EBM
of Section IV-A).

B. Train Delay Prediction
The Train Delay prediction is the problem of forecasting

the arrival and departing delay of a train for all the subse-
quent checkpoints in its itinerary, updating this predictions
every time it reaches a new checkpoint. The prediction of
the future delays is a problem of paramount importance and
yields several benefits: a reliable information for the passen-
gers currently on the trains or waiting in a checkpoint, a
better exploitation of the railway network while maintaining
the safety of the passengers and avoiding resource conflicts,
better train rescheduling and dispatching, and more.

Note that, Train Delay prediction can be seen as a stan-
dalone task (see the DDM of Section IV-B) or it ca be
retrieved from the combination of the Running Time and the
Dwell Time predictions (see the EBM of Section IV-A).

C. Penalty Costs Prediction
In an RTS the IMs and the TOs have to pay penalties, when

trains are delayed, in proportion to their actual responsibili-
ties. For this reason, predicting the Penalty Costs is a strategic
issue: an effective prediction system can be exploited to
choose the best dispatching solution which minimizes both
Train Delays and Penalty Costs. However, this problem is
rather complex since the Penalty Costs computation is the
result of a complex procedure that has to be fully understood.

Currently, in every State a document of management
principles (for example, in Italy is the PIR1) defines the
rules, agreed between the State, the IMs (e.g. Rete Ferroviaria
Italiana is an Italian IM), and the TOs (e.g. Trenitalia is
an Italian TO), that must be followed to solve the conflicts
when one or more trains are delayed and the associated
Penalty Costs that IMs and TOs have to pay based on their
responsibilities. Such rules define the level of priority of each
train based on different variables such as the category of

1http://www.rfi.it/rfi/SERVIZI-E-MERCATO/
Accesso-alla-rete/Prospetto-informativo-della-rete

Fig. 3. Handling the conflicts using Train Delay and Penalty Costs
prediction models. Exploiting the Penalty Costs prediction would result in
stopping Train A because is less expensive for the IM. Exploiting, instead
the delay would resort in stopping Train B for reducing the grater delay of
Train A.

the train and time of the day. For instance, during the daily
commuter time slot, some Regional trains could have the
same priority as the High Speed trains, even if the latter have
usually higher priority. In order to enforce the IMs to follow
these rules, if a train is delayed, the priorities also influence
the Penalty Costs associated to a Train Delay. Consequently,
in order to compute the Penalty Costs, it is required to
retrieve a series of information regarding the trains and their
itinerary. Although a deterministic relation exists to compute
the penalties, not all this variables are known at the time
of the train transit. The final penalty is usually agreed after
the train have completed its journey (even after months). For
example, the percentage of responsibility may be the results
of a legal dispute between the IM and the TO.

More in details, the Penalty Costs is the result of a
deterministic combination of the following variables:
• the category of the train (e.g. a train belonging to the

market service delayed of one hour has larger Penalty
Costs than a Freight train affected by the same delay);

• the operational category of the train (e.g. if the itinerary
is scheduled in the timetable, or it is created/modified
in the last few days before the actual train transit);

• the type of railway section (similarly to the category of
the train, the High Speed Lines are affected by a higher
Penalty Costs);

• the amount of delay of the train (e.g. the average and
maximum delay for Regional trains, or just the delay in
the final checkpoint for Freight trains);

• the percentage of responsibility of the IMs, of the TOs,
and of the exogenous factors (e.g. flooding and strikes).

D. Example

In this section, we present an example to show the useful-
ness of the predictive models described above.

Let us suppose to have two trains travelling the simplified
railway network depicted in Figure 1, with two different
itineraries as depicted in Figure 3. The first train, Train A,
travels along its gray itinerary from checkpoint A to F, while
the second one, Train B, travels its yellow itinerary from G to
F. The two trains share three checkpoints in their itineraries



(checkpoint D, E, and the destination F). The timetable has
been constructed in order to give the correct headway to the
trains for safety and regularity purposes. Suppose also that
Train A is in checkpoint B, and that Train B is in checkpoint
H.

Exploiting the Train Delay predictor, we discover that
both trains will arrive at approximately the same time in
checkpoint D, leading to a conflict. Then, we have to decide
which one of the two trains should have the priority over
the other. Exploiting just the Penalty Costs prediction would
result in stopping the Train A because is less expensive for
the IM, while exploiting just the Train Delays prediction
would resort in giving the priority to the Train A for reducing
its grater delay. Considering instead both Penalty Costs and
Train Delays predictions, would result in a more aware
decision. In this case, the most reasonable solution is to
stop Train A since it will negligibly increase its delay (few
additional minutes) to make Train B go forward, possibly
regaining some delay which is instead very costly for the
IM (so, probably, it is a more important train).

III. THE ITALIAN RAILWAY TRANSPORTATION SYSTEM

In this paper, we consider the specific case of the Italian
RTS, which is substantially handled by just one IM, Rete
Ferroviaria Italiana (RFI), which provided to us both the
knowledge of the network and the data needed for this study.

According to the International Union of Railways, the
Italian RTS is in the Top 3 and the Top 10 largest RTS
respectively in Europe and Worldwide. RFI controls every
day ≈10.000 trains travelling along the national railway
network of ≈25.000km. Every train is characterized by an
itinerary composed of an average of ≈12 checkpoints. This
means that the number of train movements is greater than
or equal to ≈300.000 per day. This results in more than one
message per second and more than 10GB of messages per
day to be stored.

Note that, every time a message describing the itinerary
of a particular train is retrieved, the predictive models can
take advantage of this new information both to make better
predictions and to updated the model itself. This allows to
have always the best performing models which exploits all
the available information, and to follow the effects of small
or big changes in the timetables that occur during the year.

Apart from the daily messages of the train movements, RFI
is also able to provide all the information about the travelling
trains and network characteristics needed to compute the
Penalty Costs according to the PIR (see Section II-C).

Finally, other exogenous information regarding the net-
work can be retrieved from many Italian freely available
data sources which can help in improving the accuracy of
the DDMs. In this work, we will take into consideration the
weather information (see e.g. [26], [27]) since in previous
works it has been shown to be an effective solution for
improving the DDM accuracy [25].

IV. THE ACTUAL SYSTEMS

This section describes two different state-of-the-art ap-
proaches employed in RFI to tackle the problems described

in this paper. In particular, RFI exploits both a EBM which
is quite similar to the one described in [15] (although the
latter includes process mining refinements which potentially
increase its performance) and a DDM [25] that produces
better predictions of the Train Delays with respect to EBM.

A. The Actual Experience-Based Model

The actual RFI EBM performs the predictions based on
the knowledge of the railway network and the experience of
the operators. It focuses mostly on the problem of predicting
the Running Time. The Dwell Time is considered fixed to
the difference between the scheduled departure and arrival
time in a station. The Train Delays and the Penalty Costs
are derived from the predicted Running Times and the fixed
Dwell Times assuming that the percentage of responsibility
for a delay is always 100% of RFI.

More in details, the idea of the EBM is to analyze the
amount of time that a train needs to traverse each railway sec-
tion of the network, taking into account the speed limits, the
state of the network, the type of train etc. The timetables are
produced taking in consideration such physical constraints
and a working margin is kept for dealing with delays. Then,
for each railway section and each train category, a coefficient,
called Gaining Time, is computed which represents the time
that be can regained in case of delay (the Gaining Time
takes into account also a possible smaller Dwell Time).
The Gaining Time is static, i.e. it does not change based
on the state of the network, weather conditions, etc. The
Gaining Time, is exploited to solve the Train Delay prediction
problem. When predicting a delay, it is assumed that a
delayed train is always able to regain, in a given railway
section, an amount of time equals to its Gaining Time.
Then, when RFI predicts the Train Delay in a subsequent
checkpoint it subtracts from the current delay all the Gaining
Times of the railway sections between the actual station until
the considered checkpoint. Once the delay is computed, the
Penalty Costs can be derived straightforward if, as in RFI, it
is assumed that 100% of the delay costs is to impute to RFI,
thanks to the deterministic formula that can be found in the
PIR.

The Gaining Times of the RFI EBM do not depend on the
time of the days, on the fact that it is a weekend or a weekday,
on the train actual delay, on the network congestion, on the
weather conditions since no easy relation can be retrieved.
On the other side, the RFI EBM is quite robust and easy
to understand from an operator perspective even if not very
accurate and dynamic.

B. The Actual Data-Driven Model

Given the low accuracy of the EBM, in RFI it has been
decided to exploit also the DDM developed in [25]. The
DDM does not take into account the knowledge of the
railway network nor the experience of the operators, but it
is based just on the historical data about train movements,
weather conditions, and weather forecasts. For this purpose,
the DDM exploits advanced analytic methods able to extract
accurate models of the future behaviour of each train. The



advantage of these methods is that there is no need of any a-
priory knowledge of the underline physical system but, most
of the time, they produce non-parametric models that are not
easy to interpret nor supported by any physical intuition or
interpretation. Moreover, in general, a great amount of his-
torical data is needed in order to build an accurate model and
it is not so easy to make these systems strongly dynamics.
In fact, if for example the timetable changes, they require
at least one month of data before achieving a reasonable
accuracy.

The RFI DDM is composed of many DDMs that, working
together, make it possible to perform a regression analysis on
the past delay profiles in order to predict the future ones. In
particular, for each train and for each checkpoint composing
its itinerary, a set of DDMs is built to predict the delay in all
the subsequent checkpoints. Consequently, the total number
of DDMs to be built for each train is ≈n(n−1) where n
is the number of checkpoints visited by the train. These
DDMs work together to estimate the delays of a particular
train during its entire journey. For a single train, every time
it arrives at (departs from) a specific checkpoint included
in its trip, the DDMs take as inputs its previous sequence
of arrival and departure Train Delays, Running Times, and
Dwell Times to predict delay for all the subsequent check-
points. These DDMs are also able to take into account the
state of the congestion of the network and other exogenous
variables (e.g. the weather information) [25]. The DDMs can
be built using many different learning algorithms, exploiting
the Random Forest (RF) usually leads to better results [28].

Unfortunately, the RFI DDM has some drawbacks. Many
historical information about the trains are requested before
performing the prediction, otherwise it perform badly (e.g. on
new trains or after changes in the timetable). Moreover, each
model composing the DDM is specific for one particular train
and checkpoint limiting its interpretability on a larger scale
(it cannot group similar trains or trains in the same category)
and the complexity of the DDM is higher with respect to
EBM (too many models to build). Finally, the DDM does not
integrate the knowledge and the experience of the operators
nor gives to the operators an interpretation of the Train Delay
phenomenon.

V. THE PROPOSED HYBRID MODEL

In this work, we propose an HM to perform the Running
Time, Dwell Time, Train Delay, and Penalty Costs predic-
tions, merging together the EBM and the DDM to exploit
their strengths and limiting their weaknesses. The goal is
to build accurate, dynamic, robust, and interpretable models
able to provide insights for both solving the train conflicts
and minimizing the Train Delays and the Penalty Costs.

Similarly to the EBM, the HM relies, on the top, on an
interpretable model able to encapsulate the experience of the
operators in the form of a decision tree and, at the bottom,
the leafs, instead of being defined relying on the physical
knowledge of the network as in the EBM, are constructed
following the ideas of the DDM where the historical data
about the network and other exogenous information (e.g.

weather) are exploited via advanced analytic methods. More-
over, contrary to the DDM, the HM does not implement one
model for each train and, contrary to the EBM, the HM
does not groups all the trains just based on their category
and railway section. In fact, the HM groups the trains based
on a series of similarity variables, defined together with the
RFI operators, which allow to have, from one side, robust
statistics, thanks to the possibility to learn from a reasonable
group of train, but also a rich feature set, to be able to
capture the variability of the phenomena. The proposed HM
is then able to be extremely dynamic: grouping the trains
increases the number of historical data to exploit during the
leaf creation and follow, in a reasonable amount of time,
timetable changes and new train schedules, thanks to the
robustness introduced by the HM experience based top level
structure.

We exploited the above mentioned approach for predicting
both the Running Time and the Dwell Time. For what concern
the Train Delay, instead, we opted for the same solution of
the actual RFI EBM (see Section IV-A). In fact, in order to
predict the Train Delay at a desired subsequent checkpoint,
we sum all the needed Running Time and Dwell Time
predictions to the current train time and then we compute
the difference between the estimated and the scheduled train
time. Finally, in order to predict the Penalty Costs, we
made use of the HM described in the previous paragraph
to predict an auxiliary variable, the Responsibility, which is
the percentage of responsibility of the IM for the delays.
Then, combining the Train Delay and the Responsibility pre-
dictions, we were able to predict the Penalty Costs exploiting
the deterministic relation described in the PIR.

The work has been conduced side by side with the RFI
operators taking into account their needs and their working
environment which is constrained, in terms of complexity
of the solution, to something that can provide simple and
effective insights.

In the subsequent subsections, we will first present in de-
tails how we constructed the above mentioned HM decision
tree based top structure and its Data-Driven based bottom
structure (see Section V-A), and then we will describe how
this HM has been exploited for predicting the Running Time,
the Dwell Time, the Train Delay, and the Penalty Costs (see
Section V-B).

A. Hybrid Decision Tree
As described before, the HM exploits, as a basic structure,

a top level experience based decision tree and a bottom
level Data-Driven model which is able to easily take into
account the network congestion state and other exogenous
information, like the weather conditions, which are not easy
to model with the experience. The top level structure can
be easily adapted to the prediction task under examination.
For instance, for the Running Time we are interested in
considering each railway section separately, instead for the
Dwell Time prediction it is better to differentiate each of the
checkpoints. The variables that we consider in the top level
structure, defined with the RFI experts, are a subset of the
ones reported in Table I. Then, as leafs of the tree, instead of



TABLE I
DESCRIPTION OF THE HM TOP LEVEL DECISION TREE FEATURE SET.

Feature Name Categorical Description

Railway Section Yes The considered railway section
Railway Checkpoint Yes The considered railway checkpoint
Train Type Yes The considered Train Type
Daytime No The time of the day with an hourly granularity
Weekday Yes The day of the week
Last Delay No The last known delay with the following granularity in minutes ([0, 2], (2, 5], (5, 10], (10, 20], (20, 30], (30, 60],

(60, 120], (120,∞));
Weather Conditions Yes The weather conditions (Sunny, Light Rain, Heavy Rain, Snow).

TABLE II
DESCRIPTION OF THE HM BOTTOM LEVEL RF FEATURE SET.

Feature Name Categorical Description

Weather Information Yes Weather condition (Sunny, Light Rain, etc.) in all the checkpoints of the train itinerary (for the already traveled
checkpoints we use the actual weather while for the future checkpoints we use the predicted weather conditions)

Past Train Delays No Average value of the past Train Delays in seconds & Last known Train Delay
Past Dwell Times No Average value of the past differences between actual and scheduled Dwell Times in seconds & Last known difference

between actual and scheduled Dwell Time
Past Running Times No Average value of the past differences between actual and scheduled Running Times in seconds & Last known difference

between actual and scheduled Running Time
Network Congestion No Number of trains traversing the checkpoints of the train itinerary in a slot of 20 minutes around the actual and scheduled

times respectively for the past and future checkpoints
Network Congestion Delays No Average Train Delay of the trains traversing the checkpoints of the train itinerary in a slot of 20 minutes around the

actual and scheduled times respectively for the past and future checkpoints

plugging an estimate of the quantity that we want to predict
based on the experience of the operators and the knowledge
of the network, we exploit a Data-Driven model able to
learn from the historical data regarding all the trains which
fall in that particular leaf (basically all trains which share
similar characteristics and itinerary) plus additional complex
features. In particular, each leaf is a RF regressor [28]
(following the experience of the DDM developed in [25]),
which predicts the quantity that we want to estimate based
on a series of features designed with the RFI experts and
based also on the lesson learned with the DDM [25]. These
feature set is reported in Table II

The whole HM is constructed and updated incrementally
as soon as a new train movement is recorded. In the top level
decision tree, a new leaf is added each time we record a new
train movement which belongs to a previously unexplored
branch of the decision tree. Then, the RF regressor in the
leaf is learned based on all the past train movements which
fall in that particular leaf. In order to follow the changes in
behaviour of the phenomena we forgot the train movements
older than three months. The predictions phase, instead, is
simpler: we just visit the tree considering the information that
we want to predict and we exploit the correct RF regressor
to make the actual prediction.

As described at the beginning of Section V, the HM will
be exploited for predicting:
• the Running Time: in this case we exploit, in the HM

top level decision tree, all the variables of Table I except
the one relative to the checkpoints since Running Time
is a property of the railway sections and do not depend
on the checkpoints;

• Dwell Time: in this case we exploit, in the HM top level
decision tree, all the variables of Table I except the one
relative to the railway sections since Dwell Time is a

property of the checkpoints and do not depend on the
railway sections;

• Responsibility: in this case we exploit, in the HM top
level decision tree, all the variables of Table I.

Figure 4 depicts an example of use of the HM for the
Running Time prediction problem. As one can see from
Figure 4, every time a new movement is recorded the HM is
updated based on the information inside the train movement
record and we exploit this new information about the travel
of the train to update all the predictions about the subsequent
railway sections.

B. Train Movements Predictors via Hybrid Model

In this section we describe how the previously described
HM has been exploited for predicting the Running Time, the
Dwell Time, the Train Delay, and the Penalty Costs.

1) Running Time Prediction: In this case we apply the
HM described in Section V-A and we directly predict the
values of the Running Times. Every time a train movement is
recorded, the model and the predicted future Running Times
are updated based on this new information.

2) Dwell Time Prediction: Regarding the Dwell Time pre-
diction we exploit exactly the same approach described for
the Running Time prediction. Note that, the only difference
between the two models stays in the feature set of the HM
top level decision tree (see Section V-A).

3) Train Delay Prediction: In order to predict the Train
Delays, instead of building another HM, we exploit, similarly
to the EBM, the Running Time and Dwell Time predictors
as building blocks. Each time a prediction is required, we
predict all the Running Times of the sections and all the Dwell
Times of the checkpoints between the current checkpoint and
the one for which we request the Train Delay prediction.
Then, the desired result is obtained by summing all these



Fig. 4. The proposed HM for the Running Time prediction: updating the model every time a new movement is recorded and predicting the future Running
Time in the subsequent sections.

times to the current time and subtracting from the results the
scheduled time.

4) Penalty Costs Prediction: In order to compute the
Penalty Costs of a particular Train Delay, we have to
combine two quantities. First, we obtain the predicted Train
Delay exploiting the approach described in Section V-B.3.
Then, we predict the Responsibility with a new HM as
described in Section V-A. Once these two predictions are
available, we combine them with the deterministic relation
described in the PIR, obtaining the Penalty Costs prediction.

Specifically, we compute the Penalty Costs P of a train as
follows:

P = PU

∑
j∈I

mjrjCTCNCD, (1)

where PU is the unitary costs, I is the set of checkpoints
composing the itinerary, mj are the minutes of delay at
section j, rj is the percentage of responsibility for section
j, CT is coefficient relative to the type of the train T , CN

is the coefficient relative to the type of railway network N ,
and CD is a coefficient which depends on the average and
maximum delay registered for the train. The parameters mj

and CD are estimated with the Train Delay predictor. The
parameters rj are estimated with the Responsibility predictor.
More details about Eq. (1) can be found in the PIR.

VI. EXPERIMENTAL EVALUATION

In this section we test the proposed HM, presented in Sec-
tion V, against the actual RFI EBM, presented in Section IV-
A, and DDM, presented in Section IV-B.

All the experiments have been conducted on a virtual
machine in the Google Cloud Platform2 (GCP). The machine
is the n1-standard-8 characterized by 8 core and 30GB of
RAM and 500GB of SSD disk space. Each experiment has
been repeated 30 times in order to ensure the statistical
robustness of the results.

2Google Compute https://cloud.google.com/products/

A. Available Data

The experiments have been conducted exploiting the real
data provided by RFI:
• data about train movements which contains the follow-

ing information: Date, Train ID, Checkpoint ID, Actual
Arrival Time, Arrival Delay, Actual Departure Time,
Departure Delay and Event Type. The Event Type field
can assume different values: Origin (O), Destination
(D), Stop (F), Transit (T).

• data about the delay responsibilities: for every delay the
percentage of RFI responsibility is available;

• timetables, including planning of exceptional train, can-
cellations, and Gaining Time of each section.

For the purpose of this work, RFI provided the access to
the data of 12 months (the whole 2016 solar year) of train
movements of one big Italian Region (Liguria). The data are
relative to more than 2.500 trains and 146 checkpoints. The
dataset contains 4.127.380 train passages.

From the PIR, freely available on the RFI website1, we
retrieved all the information needed to compute the Penalty
Costs as described in Section V-B.4.

We also exploit, as exogenous information, the weather
conditions from the weather stations in the area. For each
checkpoint we consider the closest weather station to the
railway station/line. We collect the data relative to the
solar radiation and precipitations for the same time span
of the train passages from Italian national weather service
databases, which are publicly accessible for the Liguria
Italian Region at [26]. From this data it is possible to extract
both the actual and the forecasted weather conditions (Sunny,
Rain, Heavy Rain, and Snow).

B. Key Performance Indicators

In the experiments, we exploit the following Key Perfor-
mance Indicators (KPIs) for measuring the quality of the
different models (in parenthesis we report the prediction



TABLE III
COMPARISON BETWEEN HM AND

EBM FOR Running Time
PREDICTION. (n) IS THE NUMBER

OF TRAIN PASSAGES IN THE

SECTION.

AASk
k n EBM HM

1 7344 1.1 0.9
2 10672 1.7 0.8
3 22082 1.2 0.9
4 1013 1.4 0.4
5 25228 0.5 0.4
6 18090 0.8 0.5
7 398 3.2 2.9
8 12671 1.2 0.6
9 29357 1.4 0.9
10 5614 2.7 1.5

· · ·
AAS Regional 1.3 0.8

AAS High Speed 0.8 0.6
AAS Freight 1.9 1.2

AAS 1.3 0.9

TABLE IV
COMPARISON BETWEEN HM AND

EBM FOR Dwell Time
PREDICTION. (n) IS THE NUMBER

OF TRAIN PASSAGES IN THE

CHECKPOINT.

AACk
k n EBM HM

1 49134 1.7 0.7
2 61888 0.1 0.3
3 22210 1.4 1.2
4 23629 2.4 1.8
5 29652 2 1.6
6 29271 1.3 1
7 33350 1.2 0.9
8 22508 0.5 0.2
9 33418 0.8 1
10 24307 0.5 0.9

· · ·
AAC Regional 1.1 1.1

AAC High Speed 0.5 0.7
AAC Freight 2.5 1.5

AAC 1.1 1

problem where they have been applied). These KPIs have
been designed together with RFI based also on the lesson
learned during the exploitation of the DDM [25]:
• AASk (Running Time prediction): the Average Accuracy

for a particular Section k. AASk is computed as the
averaged absolute value of the difference between the
predicted and the actual Running Times in minutes;

• AAS (Running Time prediction): is the average over the
different sections k of AASk

• AACk (Dwell Time prediction): the Average Accuracy
for a particular Checkpoint k. AACk is computed as the
averaged absolute value of the difference between the
predicted and the actual Dwell Times in minutes;

• AAC (Dwell Time prediction): is the average over the
different checkpoints k of AACk

• AAiCTk (Train Delay prediction): the Average Accu-
racy at the i−th subsequent Checkpoint for Train k. For
a particular Train k, the absolute value of the difference
between the predicted delay and its actual Train Delay
is averaged, at the i−th subsequent checkpoint with
respect to the actual checkpoint in minutes;

• AAiC (Train Delay prediction): is the average over the
different trains j of AAiC.

• AAP (Penalty Costs prediction): is the Average Accu-
racy over the different trains between the predicted and
actual Penalty Costs in Euros.

C. Results
In this section we compare the proposed HM for predicting

Running Times, Dwell Times, Train Delays, and Penalty Costs
against the EBM and DDM, by using the data described in
Section VI-A and the KPIs described in Section VI-B

1) Running Time Prediction: In this first set of experiment
we compare the HM with the EBM on the Running Time
prediction problem. We could not compare them also with
the DDM since it does not provide a solution for this
problem [25].
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Fig. 5. AAS for the Running Time during the year.

Table III reports the AASk for a subset of the railway
sections and the AAS also considering the different train
types3. From the results it is possible to observe that:
• HM clearly outperforms the EBM;
• the improvement is more evident for Freight and Re-

gional trains, instead for High Speed trains the two
approaches provide similar results.

In order to show the ability of the proposed solutions to
handle changes in the timetable, Figure 5 reports the value
of AAS during the 2016. From Figure 5 it is possible to
observe that:
• HM is constantly better with respect to the EBM during

the whole year;
• HM needs really little time to learn a good model, for

example in January after 10 days of data it reaches
almost its optimal accuracy;

• HM and EBM exhibit an increase in the error in June
(days from 180 to 210), this is motivated by a change
in the timetable happened the 12nd of June.

Note that, even if the HM has a Data-Driven core, it is still
robust and the EBM and much more dynamic of any DDM.

2) Dwell Time Prediction: For what concern the Dwell
Time prediction problem, the approach, the results, and the
comments are quite similar to the one made for the Running
Time prediction problem. Table IV, analogously to Table III,
reports the AACk for a subset of the checkpoints and the
and AAC also considering the different train types3. From
Table IV it is possible to observe that:
• in this problem EBM and HM provide similar results,

being HM slightly better;
• similarly to the result for the Running Time prediction

problem the HM approach results to be particularly
effective for the Freight trains.

We do not report the equivalent of Figure 5 since results are
basically the same.

3Because of confidentiality issues we cannot report the results and the
ids for all the sections and all the checkpoints available.



TABLE V
COMPARISON BETWEEN HM, EBM, AND DDM FOR Train Delay PREDICTION. (n) MEANS THE NUMBER OF DAYS THAT THE TRAIN TRANSIT

ACCORDING TO OUR DATASET. (–) MEANS NOT AVAILABLE SINCE DATA IS NOT ENOUGH TO BUILD THE MODEL.

AAiCTk EBM DDM HM EBM DDM HM EBM DDM HM EBM DDM HM

· · ·

k
i n 1st 2st 3st 4st

1 349 1 0.6 0.5 1.2 0.7 1 1.7 1.1 1.5 2.1 1.4 2.1
2 346 1 0.5 0.4 1.2 0.8 0.9 1.5 1 1.3 1.8 1.2 1.6
3 345 0.5 0.4 0.3 0.9 0.6 0.4 1.1 0.8 0.6 1.2 1 0.7
4 308 0.9 0.5 0.5 1.5 1 1.2 1.7 1.3 1.4 1.9 1.4 1.8
5 235 0.9 0.9 0.7 1.5 1.3 1.3 2 1.5 1.8 2.5 1.8 2.3
6 175 0.7 0.4 0.5 1.1 0.7 1 1.4 0.7 1.3 1.8 1 1.7
7 169 0.7 0.4 0.4 1 0.6 0.9 1.3 0.6 1.2 1.6 0.8 1.6
8 129 2.4 3.4 1.6 5.1 6.2 3.9 7.8 9 6.4 9.9 11.3 8.2
9 14 1.4 – 1.1 2.1 – 1.7 2.8 – 2.2 3.1 – 2.6

10 2 1.8 – 1.1 3.8 – 1.9 5.9 – 3 7.6 – 4
· · ·

AAiC Regional 1.2 0.8 0.9 2.1 1.5 1.7 3 2.2 2.5 3.8 2.8 3.3
AAiC High Speed 0.7 0.7 0.5 1.2 1.1 1 1.6 1.4 1.4 2 1.7 1.8

AAiC Freight 1.9 3.5 1.6 3.6 5.2 3.1 5.3 6.9 4.7 6.9 8.2 6.1
AAiC 1 0.9 0.8 1.8 1.5 1.6 2.5 1.8 2.3 3.2 2.1 2.9

TABLE VI
COMPARISON BETWEEN HM AND EBM FOR Penalty Costs PREDICTION.

EBM HM

AAP Regional 4.15 2.49
AAP High Speed 0.2 0.14

AAP Freight 0.11 0.1
AAP 4.44 2.71

3) Train Delay Prediction: In this section we compare the
HM with both the EBM and the DDM for the Train Delay
prediction problem.

Table V reports the AAiCTk for a subset of the trains
and subsequent checkpoints and the AAiC also considering
the different train types3. From the results it is possible to
observe that:

• both the HM and DDM perform better with respect to
the EBM approach;

• the HM better predicts the delays in the subsequent
checkpoint (i = 1);

• the DDM better predicts the delays when the distance
from the actual checkpoint is larger;

• DDM is not able to perform the prediction for the trains
for which we have too less information (i.e. infrequent
trains) while HM is always able to provide an answer;

• for what concern the Freight trains, DDM provides the
largest error while HM improves of ≈20% over also the
EBM.

4) Penalty Cost Prediction: In this section we compare the
HM with the EBM on the Penalty Costs prediction problem.
We could not compare them also with the DDM since it does
not provide a solution for this problem [25].

Table VI reports the AAP considering the different train
types3. From Table VI it is possible to observe that:

• the HM is much more effective with respect to the EBM
for all the train categories;

• the difference is much more evident for the Regional
trains which are also the most expensive in terms of
Penalty Costs for RFI.
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Fig. 6. Computational Time Evaluation.

D. Computational Requirements
Finally, we compare the computational requirements of the

different models. Figure 6 depicts both the scalability varying
the number of cores (left) and the trade-off between accuracy
and computational requirements (right) for the Train Delay
prediction case (AAiC with i = 1). The time reported on the
axis is the time needed for performing the analysis of all the
12 months of data provided by RFI.

From Figure 6 we can observe that:
• EBM and HM have a similar scalability, the compu-

tational time decreases smoothly when more cores are
added to the computation;

• DDM, when 8 cores are exploited, requires 100× the
time with respect to EBM and HM (we did not execute
DDM with less than 8 cores because the computation
required more than 10 hours);

• EBM and HM have similar computational requirements,
being HM just slightly slower with respect to EBM;

• HM provides clearly the best trade-off between accuracy
and computational requirements.

In conclusion, EBM is the fastest method but, with a small
additional computational effort with respect to EBM, HM is
able to deliver a model which is extremely more accurate
with respect to EBM and DDM.

VII. CONCLUSIONS

In this work we dealt with the problem of understanding
and predicting the train movements in Large-Scale Railway



Networks. In particular, our purpose was to predict the Run-
ning Time of a train between two stations, the Dwell Time of
a train in a station, the Train Delay, and the Penalty Costs,
four important aspects which fully characterize the train
movements and that where never studied together before.
For this purpose, we proposed, for the first time, an hybrid
approach which is able to merge together two approaches
adopted in literature: the one which develops models based
on the knowledge of the network and the experience of the
operators and the one based on the analysis of the historical
data about the network with advanced analytic methods.
The result is a dynamic, interpretable, and robust hybrid
data analytics system able to handle non recurrent events,
changes in the behaviour of the network, and ability to
consider complex and exogenous information like weather
information. Basically, the proposed approach is able to take
the strengths of the two original approaches and to limit
their weaknesses. Results on real world data coming from
the Italian railway network shown that the proposed solution
outperform both state-of-the-art experience and Data-Driven
based systems.
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