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9ȄŜŎǳǘƛǾŜ {ǳƳƳŀǊȅ 

The objective of this document D6.1 is to describe the data analytics platform which is the infrastructure 

that complements the data storage facility provided by WP3 in IN2DREAMS project. This platform is the 

basis for further analytics algorithms (tasks 6.2 and 6.3) and application use cases development (task 6.4), 

keeping in mind that the final objective is to assist infrastructure managers and railway operators to select 

optimal strategies and resources in order to support in a cost effective and energy efficient manner railway 

applications. 

To develop the analytics platform, the QMiner software was selected which is designed for scaling millions 

of instances on high-end commodity hardware, providing efficient storage, retrieval and analytics 

mechanisms with real-time response. Moreover, as the framework is written in C++ for lightweight data 

processing, it enables ubiquitous deployment for various use case scenarios. The powerful software 

architecture integrates connexions with communication platforms (WP2), analysis inside QMiner, data 

bases and visualisation application. 

A use case with real data (Reims tramway use case coming from IN2RAIL project) has been selected in order 

to define how the data analytics platform will be used to support a real use case scenario and to gain insight 

into the main required functionalities which will be used and developed in the upcoming tasks (data pre-

processing, forecast modelling, power system modelling and fault detection, and operation optimisation). 

Designed architecture and selected components of QMiner offer modular structure with loosely coupled 

components, to achieve a high level of analytical infrastructure flexibility and scalability. In such way, the 

analytical infrastructure will be able to support a plethora of use cases and the complexity of the designed 

project in the following phases. Even if time is required to adapt the component and the models to the 

specifications of every use case which could be developed in the future, a high level of flexibility and 

scalability can be achieved with QMiner because it is open source and integrated with a message broker. 
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 Abbreviation Description 

API Application Programming Interface 

APS Alimentation Par le Sol or Aesthetic Power Supply 

DB Database 

EU European Union 

GA Grant Agreement 

H2020 Horizon 2020 framework program 

IN2RAIL Innovative Intelligent Rail 

JS JavaScript 

JU Shift2Rail Joint Undertaking 

LCC Life-Cycle Cost 

WP Work Package 
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1 LƴǘǊƻŘǳŎǘƛƻƴ 

1.1 Objective of the deliverable 
²ƻǊƪ tŀŎƪŀƎŜ с ό²tсΣ ά¦ǎŜǊ !ǇǇƭƛŎŀǘƛƻƴǎέύ ƻŦ ǘƘŜ IN2DREAMS program is divided into 4 complementary 

tasks related to applications of energy management for railway operations. Task 6.1 provides the analytics 

infrastructure that complements the data storage facility provided by WP3. This infrastructure uses QMiner 

(https://github.com/qminer/qminer/wiki), an opensource software. QMiner is an analytics platform for 

large-scale real-time streams containing structured and unstructured data. 

The objective of this deliverable D6.1 is to install QMiner software and to determine the main functions of 

the analytics platform which will be used in the next tasks. As it was necessary to use real data in order to 

identify the main required functions for the future tasks, the installation was based on the Reims tramway 

data which were also used within the IN2RAIL project. 

The architecture of the analytics platform is described in Section 2. Section 3 presents the Reims tramway 

data (description of the use case for the WP6, description of the data sets, data access and storage). Section 

4 describes the choice of QMiner, the installation of the software and the main data analysis frameworks 

which will be used in the next tasks. Finally, the last Section describes the advanced visualisation 

application. 

 

1.2 Inputs 
ISKRATEL and EVOLUTION ENERGIE participated in the writing of this deliverable. 

The work described in this deliverable required real data. Data of Reims tramway use case coming from the 

IN2RAIL project were used with the help of UNIBRI and ALSTOM who are partners in IN2RAIL. The Open 

Data Management (ODM) platform developed in the IN2RAIL project is used as input source for the raw 

data feeding the analytics platform based on QMiner which is developed in this document. 

 

1.3 Main results 
The QMiner software is a very suitable choice for the analytics platform as it is designed for scaling millions 

of instances on high-end commodity hardware, providing efficient storage, retrieval and analytics 

mechanisms with real-time response. 

The installation of QMiner within the data analytics platform has been successful. The software can be used 

for further analytics algorithms (tasks 6.2 and 6.3) and application use cases development (task 6.4). 

Moreover, a visualisation application is integrated into the analytics platform to allow an easier access and 

a better understanding of the data and of the model results. 

The work done is highly correlated to other WP: the use case for QMiner implementation (Reims tramway) 

was also used in WP5 as a data analytics scenario which will be used in the task 5.2 to define KPIΩǎ ǊŜƭŀǘŜŘ 

to models which will be developed in the task 6.2. Moreover, QMiner is a highly flexible software which will 
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be able to integrate new data coming from WP3 and from other projects (IN2STEMPO for example) through 

connexions with the communication platform developed in WP2.  

 

2 5ŀǘŀ !ƴŀƭȅǘƛŎǎ !ǊŎƘƛǘŜŎǘǳǊŜ ŀƴŘ LƴŦǊŀǎǘǊǳŎǘǳǊŜ 

2.1 Architecture overview 
In order to address the issues of the Work Package 6, a specific data analytics platform has been designed 

and deployed. This platform is based on open source technologies and is aimed to be flexible as possible in 

order to be adapted to different input data, to the different aims of the Work Package and to potential 

other tools for other aims.  

An overview of this platform and its functioning is given in figure 2.1 (a more detailed version is given in 

section 2.2). The architecture is the following:  

- Input data are obtained from other platforms (e.g. from the IN2RAIL platform, from the IN2DREAMS 

WP3 platform or directly from the sensors). Specific connectors should be developed at this point 

to connect to the input data and send them as a stream of raw data to a message broker. 

- The message broker (apache Kafka) is the central brick of the platform since it communicates with 

all the elements and it allows 4 main features: 

o loose coupling between components; 

o easy replacement of each components (with new technologies or other more appropriate 

technologies) if needed; 

o easy adding of new components (for instance for tasks 6.3 and 6.4 where the detailed 

functioning is not yet known); 

o working on streamed, real-time data. 

We chose apache Kafka for its streaming quality, its rapidity and easiness to connect with different 

technologies (Node.js, Java, InfluxDB to name but a few). This Kafka broker is hosted on a 

Zookeeper server. 

- Streamed data (raw and processed data, analytics) are persisted into a database, namely an 

InfluxDB database, which fits the need of rapidity in writing and reading large amounts of data. 

- Finally, APIs are set up in order to give access to data to external users (for instance via a dashboard 

or for other automatic tools). Such APIs should have a secure access and only selected users and/or 

applications should be authorised to access it in order to guaranty the privacy and security of the 

data. 
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Figure 2.1: Simplified overview of the architecture 

 
Based on this architecture and the coming tasks of the Work Package (tasks 6.2, 6.3 and 6.4), we defined 

the following data flow (see figure 2.2) that takes advantage of the flexible solution we designed. Note that 

the flow of data for task 6.4 is not defined yet, but the architecture with loosely coupled components and 

APIs will allow it to fit into the platform. 

The data flow is the following: the work package has one input which are the raw data coming from 

instrumented trains and substations. These data are processed by different components (pre-processor, 

machine learning engine, algorithms to complete missing data, fault detection algorithms) and several 

output data are obtained. All of them are then re-usable in other components (whether internal or external 

to this platform). Examples of external components could be applications displaying to drivers or asset 

manager the historical and real-time electrical consumption of the train(s) as well as the forecasted 

consumptions. These data could also be used for decision support tools for these same users, giving them 

advices for the driving (drivers) or the management of the train line (asset manager). 

The outputs are then the following: 

- First, input raw data are pre-processed through corrections of offset or/and detection of outliers. 

This pre-processing is part of task 6.2. The first output data are then pre-processed data. 

- Then, those pre-processed data are leading to 4 different data types: 

o In task 6.2, these data are analysed in order to get a forecast model (more specifically the 

parameters of this model); 

o And based on this model and the pre-processed data, the forecasted data are obtained. 
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o In task 6.3, fault-detection algorithms are applied on pre-processed data and alarms are 

obtained; 

o Still in this task 6.3, in case only partial data are available (only low-level sensor, not 

measuring directly the voltage for instance), completed data are obtained through specific 

models. 

- In addition, the output data obtained from 6.3 (i.e. completed data) are used to get a forecast 

model and forecasted data. 

- Finally, the forecasted data are compared to pre-processed data to quantify afterwards the error 

in the modelling. 

 

 

Figure 2.2: Data flow on the IN2DREAMS platform 

 

2.2 Detailed architecture 
Based on the previous data flow and the overview of the architecture, we provide below a detailed view of 

the architecture (Figure 2.3) and a list of the deployed tools (figure 2.4), taking into account their interfaces 

(input and output) with external tools or services. Based on these two figures, we can detail the functioning 

of the platform and its workflow: 

1. The very first step consists in obtaining the historical data from the data sources, via specific connectors, 

and to put it all in the InfluxDB. This should normally be done only once (at the very beginning), but it may 

happen, during the day-to-day functioning that data are missed and that this specific connector is used 

once again to complete the database (DB). 

2. Then, the resimulator is launched in order to feed the Machine Learning algorithms with all available 

historical data. Functioning is such that those historical data are taken from the influxDB (filled with 
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historical data in step 1. and sent exactly via the same stream as real-time data (thus allowing the analytics 

components to not apply a special treatment for historical data). Besides, the resimulator is highly 

configurable, allowing to send only a limited quantity of history or the whole data set. Note that, even when 

resending all the historical data as stream, time is compressed as the data are sent one after another, clearly 

without waiting the same time as in real-time between two data. 

3. Once all the historical data have been sent to Kafka, it is possible to activate the real-time feed. A specific 

connector gets the data from the input data-source (via APIs or other technologies) and sends these data 

to the according Kafka stream. 

4. The QMiner algorithms as well as the algorithms of task 6.3 are permanently linked to the Kafka streams. 

Thus, they are starting to process the data as soon as new data (historical then real-time) are available in 

the stream. And they are emitting processed data on other streams once the 

modelling/forecasting/analyses have been performed. For instance: 

a. QMiner takes raw data as an input; 

b. It emits pre-processed data as an output; 

c. Some of these pre-processed data are used by algorithms of task 6.3 to model complete data; 

d. And it emits these completed data on a new stream; 

e. These completed data are then used by QMiner to get a forecast model; 

f. QMiner emits the forecasted data of this model as well as the forecast error; 

g. Forecasted data (as well as pre-processed data and forecast error) are used by the dashboard to 

be displayed to the users. 

5. In addition, the Kafka streams are always connected to a dedicated KafkaToInflux connector that takes 

care of the persistence of configured data-streams, from Kafka to InfluxDB. 

6. Thus, the persisted - historical - data remain accessible via a secured API for future use. 

7. External tools as well as a dedicated dashboard are connected to historical and real-time data (raw, pre-

processed and processed data) to display them or use them for new algorithms. 
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Figure 2.3: Detailed architecture of the IN2DREAMS Platform 

 

 

Figure 2.4: List of deployed components and their technology 
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2.3 Infrastructure and security 
All the previously presented components are deployed on the same machine. For this project, we are 

working with a Microsoft windows environment, consequently all components are deployed as windows 

services. Once all deployed, the services should be started according to a particular schedule. There are 

many dependences and precedence issues to be taken care of. This leads to the following schedule to start 

the services (see Figure 2.5). 

Task        
Windows Server start   

      
Zookeeper 

 

  

     
Kafka 

  

  

    
InfluxDB 

 

  

     
KafkaToInflux 

   

  

   
QMinerApp 

   

  

   
APIs 

    

  

  
DashboardNodeServer 

    

  

  
HistoricalStreamResimulator 

     

  

 
RealTimeStreamConnector 

      

  

Figure 2.5: Schedule of the services 

 
All these services should be monitored and automatically restarted in case of an unplanned stop. Of course, 

restarting automatically a service needs to ensure that the restart task fits into the schedule (all the services 

it relies on should still be running correctly and all services relying on this service should probably be 

restarted afterwards). Moreover, considering the substantial number of components, future work will focus 

on automating as much as possible the deployment of the whole platform. 

All components are deployed on a secured server and only stakeholders from the WP6 shall have access to 

this server. The single points of access to the data for other external applications and services are APIs 

secured with SSL certificates. These secured APIs give access to real-time data (through Kafka streams) and 

historical data (through the InfluxDB). 
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3 ¢ƘŜ wŜƛƳǎ ǘǊŀƳǿŀȅ Řŀǘŀ 

3.1 Use cases: Level 1 and Level 2 

Data collected through smart metering make the infrastructure manager or the railway operator informed 

about energy behaviour, by way of combining real-time energy use and accurate billing. The consumer can 

act in two directions: energy saving, knowing the overconsumption sources, and billing reduction, switching 

the consumption to less expensive periods, when possible. 

Smart metering easily enables these two steps, measure and analyse, which are very useful to introduce 

the DMAIC (Define, Measure, Analyse, Improve, Control) method for an energy management system, which 

supports and is in line with the ISO 50001 standard. 

The IN2DREAMS project is designed to include multilevel data modelling, including building data 

infrastructure from the level of measurement, transportation integration and analytics, to business process 

modelling and data applications design. From the perspective of use case definition, this presents tow two 

very distinct levels of use case definition, referred to as: 

a) Use Case Level 1 

Use case related to design and development of architecture for analytical infrastructure, including data 

analytics modelling and forecast scenarios. Use case Level 1 define design of forecast models to be 

deployed on analytical infrastructure. Use case can therefore support a plethora of use cases at the 

application level - Level 2, for end applications development.  

 

b) Use Case Level 2 

Use case related to design and development of data applications, such as anomalies detection, asset 

management, demand side management, energy demand portfolio management, etc. These use case 

applications can apply data/functions derived from Use case level 1 as a feature or input for process 

modelling and application business function execution. 

 

3.1.1 Use case Level 1: data analytics use cases 

For data modelling and analytical infrastructure design, data from smart metering are collected from a 

commercially operated railway line under normal traffic conditions, as well as smart metering data from 

charging substations. The main objective is to observe energy data from two different scenarios:  

- Data collected on train on-board unit; 

- Data collected from stationary charging stations. 

As real-case scenario, the data from the experimentation on the tram network of Reims (France) are used 

for this project. 
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On-train energy load forecast 

Data analytics for the on-board unit will include design and development of a model for short-term forecast 

of energy consumption of the train (on a time horizon from few seconds to few minutes). The use case 

requires modelling the energy demand of a moving object, including features such as geolocation. 

Substation charging forecast 

Data analytics for charging substations will include mid-term energy demand forecasting (on a time horizon 

from 1 hour to one day). The use case requires modelling of the energy node (charging substation) as a 

stationary node in time and not as a moving object. 

The two main subsets of analytical use cases described will be further elaborated in the following of the 

project development, although they serve as the main pillar for selecting methodologies and designing 

analytical architecture in this deliverable. To implement the analytical use case, we will use the QMiner 

stream analytics engine for designing and deploying a predictive model for load forecasting on grid 

substations and on-board trains consumption. 

3.1.2 Use case Level 2: applications use cases 

Level 2 use cases are focused on modelling domain-specific problems, such as: effective asset management, 

energy consumption optimisation, energy portfolio management and demand side management and 

virtualisation of demand, anomalies detection and others. While energy forecast values will serve as input 

data for final applications operations, analytical models designed can support a plethora of applications.  

 

3.2 Data description 
The experimentation of the tram network of Reims (France) has been started in 2016 within the IN2RAIL 

project framework. ALSTOM, who designed and commissioned the Reims tram, has instrumented two 

trains and one substation in order to collect real-time data on the energy consumption of the different 

systems on-board and trackside. 

3.2.1 The Reims tram system 

The Reims tram network crosses the city from north to south and is composed of one main line (A) starting 

from the terminus in the north and ending in the south and a secondary line (B) separating from the main 

in the south and terminating in the south-west (see Figure 3.1). The itinerary covers about 11 km of route 

and includes 23 passenger stations.  
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Figure 3.1: Itinerary map of the Reims tram system1  
 

The trams on the line are of the ALSTOM Citadis 302 type and each tram is composed of 5 cars for a total 

length of 32.4 meters and a weight of 40.6 tons, when empty. Each tram can accommodate 206 passengers, 

can reach a maximum commercial speed of 70 km/h and is operating between 5h30 to 23h30 or 00h30 

(depending on the week day) with a frequency of a passage every 5-6 minutes on the A line and every 20 

minutes on the B line2.  

The train is powered through a pantograph from the overhead electric line during most of its route. Along 

2 km in the city centre, to preserve the city historical view around the cathedral, the overhead line is 

replaced by ground-level power supply (APS, Alimentation Par le Sol), consisting of a third rail, within the 

running rails, supplying the power. 

Along the line, seven power substations are distributed and are responsible for converting the high voltage 

from the public grid into the direct network feeding the trains. 

                                                           
 

1 https://commons.wikipedia.org/wiki/File:Plan_tramway_reims.png 
2 http://www.citura.fr/fr/tram/74  
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3.2.2 The data set 

Within the Reims tram experimentation, data from two instrumented trams and one substation are 

acquired and transmitted in real-time to the cloud, where they are made accessible to the IN2DREAMS 

consortium members. The actual delay of transmission can vary depending on the data transmission 

technology used. 

The power injected into the tram and distributed into the different subsystems onboard the train can be 

monitored by sensors and meters (Figure 3.2). Most of the energy is used for the traction and breaking of 

the train. While the train is powered through the overhead line, when breaking, part of the train kinetic 

energy can be converted into electrical power and reused or stored within the train or reinjected through 

the pantograph into the tram line, in order to power other trains or ground equipment. However, this is 

not possible within the APS zone of the itinerary, where during the breaking phase all the kinetic energy in 

excess is dissipated into resistors.  

The rest of the energy injected into the train is used to power auxiliary systems (air conditioning and 

heating, lightings, signalling systems, etc.) and to power filters and converters that ensure the functioning 

of these systems, or it is stored in on-board storage units for subsequent use. 

The substation monitoring (started in 2017) provides information about the power injected into the tram 

line, which can be used by all the trains connected to the portion of the line where the substation is located. 

Within the Reims tram experimentation, besides the measurements of current and voltage of several on-

board subsystems, the position and speed of the trains are recorded in addition to some environmental 

measurements (e.g. inside and outside temperatures).  

 

 

Figure 3.2 Schematic example of energy consumption monitoring for a tram network. 
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3.3 Data storage and access 
Based on the architecture we defined in section 2, the Reims tramway data are composing the data-source 

referenced in Figure 2.3. Moreover, since data from 2 trams and a substation have been gathered on the 

same platform (the IN2RAIL ODM), this platform is the unique input data-source. Conforming to our 

architecture, these input-data are split in two types, real-time data and historical data: 

- Historical data can be obtained in the form of csv files and a specific connector transforming these 

csv into InfluxDB time series has been developed and deployed on the IN2DREAMS platform; 

- Real-time data are obtained via a MQTT broker. Thus, the first step consists in deploying a specific 

connector aimed at converting the MQTT stream into a Kafka one; 

- As an alternative to this MQTT broker and to test the reliability of the chosen architecture as soon 

as possible in the project, it is also possible to not consider MQTT at first and to split the available 

historical data (4 years) into two sets: one set (the first 3.5 years for instance) actually considered 

as historical data and the rest (the last 0.5 years for instance) can be used to simulate 6 months of 

άǊŜŀƭ-ǘƛƳŜέ Řŀǘŀ όǿƛǘƘ ǘƘŜƛǊ ŎƻǊǊŜŎǘ arrival frequency). This approach will allow us to validate our 

technical choices for all types of data and to have an operational platform as soon as possible. 

 

Figure 3.3: Input connection between Reims tramway data and IN2DREAMS platform 

 
To conclude this section, it is important to note that, ultimately, the IN2DREAMS platform will be hosted 

on the same network as the platform hosting the Reims tramway data, thus simplifying the connection 

between the data-source and the analytics platform. 
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4 5ŀǘŀ ŀƴŀƭȅǎƛǎ ŀƴŘ ƳƻŘŜƭ ǇǊŜŘƛŎǘƛƻƴ 

4.1 QMiner 
QMiner is an open source analytics module for performing large-scale data analysis in real-time. The main 

engine is written in highly effective C++ code, while the end functionalities are exposed using a JavaScript 

API as Node.js package (https://www.npmjs.com/package/QMiner). The design of the stream engine makes 

it very suitable for fast prototyping while still maintaining high performance, crucial for implementation in 

real industry settings. The main requirements for QMiner were driven by the need for fast development 

and prototyping of machine learning and artificial intelligence algorithms. This posed a challenge to operate 

on large data sets (hundreds of gigabytes) in real-time on high-end commodity hardware. These goals and 

constraints resulted in a unique set of features that were implemented in QMiner. Architecture design 

includes elements for efficient storage, online and real-time data processing, which makes QMiner a unique 

framework for processing streams of structured as well as unstructured data. 

While QMiner is an open source project, it has an extensive knowledge base for its exploitation in streaming 

sensor data scenarios, being implemented in various similar project setups: from environmental 

intelligence, to intelligent traffic control systems and smart grid applications, as well as other fields such as 

streaming text analysis and anomaly detection.  

The main advantage of QMiner in comparison with other open-source platforms is in its ability to support 

the deployment of analytical models on data streams. Moreover, the basic functions of QMiner are written 

in fast and reliable C++ native code, using high-performance computational libraries such as Intel MKL 

(Math Kernel Library). This enables QMiner to operate as a powerful and reliable stream processing engine, 

which, combined with using appropriate architectural design, can significantly reduce computational 

demands of a high number of updating models. Effective real-time processing capabilities and its platform 

independence, make QMiner ideal for edge computing use cases. In this project we will use QMiner to 

design a decentralised, light-weight, real-time, on-board analytical solution that will be possible to install 

directly on a train, on an average microcontroller unit. This solution will provide very short-term load 

forecasts (couple of seconds into the future), based on which conceptually higher-level use cases will be 

able to optimise the energy usage on the grid.  

An important feature offered by QMiner is a built-in non-relational storage, which enables incorporating 

any type of data (structured or unstructured) while providing all the features for scaling and parallel 

computing. The built-in QMiner database is designed for implementation in in small modules and for fast 

prototyping, while for larger systems external data bases and big data technologies can be used. Using a 

non-relational database system constitutes an important advantage of QMiner, compared to other 

analytical frameworks. 

Finally, since QMiner will be used as a building block, wrapped in the Node.js project, the approach will 

offer a large variety of different modules to connect to different streaming data sources (using Kafka broker 

as a loosely coupled integration). A combination of architectural design and loosely coupled components 

offers an effective analytical infrastructure for fast prototyping and testing, as well as robust operation. 

 

https://www.npmjs.com/package/qminer
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4.2 Installation of QMiner 
QMiner is platform independent and can therefore run on various platforms: Windows, Linux, iOS, 

Raspbian, etc. Since it is built as a Node.js module, we installed it by using the npm3 package manager.  

Detailed instructions for installation of QMiner can be found on the official website 

(https://QMiner.github.io/setup/) or GitHub page (https://github.com/QMiner/QMiner). 

Prerequisites: 

node.js v9.x, v8.x, v7.x, v6.x, v5.x, v4.x and npm 5.3 or higher 

To test that your node.js version is correct, run node --version and npm --version. The node.js version 
should be more than v0.12. 

Windows: Visual C++ Redistributable Packages for Visual Studio 20154 is required. Download 
vcredist_x64.exe for node.js x64 or vcredist_x86.exe for node.js x86. 

Installation: 

npm install QMiner 

Test installation: 

node -e "require('QMiner'); console.log('OK')" 

 

4.3 Data analysis framework 
QMiner is used at the heart of our stream data analytics platform. Figure 4.1 represents the inclusion of 

QMiner into the analytical framework of this project. The design includes all the important components 

(from database to machine learning algorithms) to design the entire and fully functional application. A 

detailed description with examples of usage of the most important components is available in this section. 

 

                                                           
 

3 https://www.npmjs.com/ 
4 https://www.microsoft.com/en-us/download/details.aspx?id=48145 

https://qminer.github.io/setup/
https://github.com/qminer/qminer
https://www.microsoft.com/en-us/download/details.aspx?id=48145
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Figure 4.1: Modelling architecture with QMiner framework 
 

Additionally, Figure 4.2 presents the conceptual analytical workflow, showing the main functionalities and 

tasks of each subsection within the workflow. This figure explains how the overall QMiner framework fits 

into the broader data analytics workflow.  

 

Figure 4.2: Full stack analytical workflow including QMiner as a Node.js package 
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4.3.1 Data processing 

In order to process data streams in an online manner in QMiner, stream aggregates are used, which 

are stateful and typically do not interact with large sets of records - the streaming scenario entails operating 

at the end of the data stream (possibly with a short buffer). Their implementations reflect that, for example, 

the exponential moving average filter is implemented by using update formulas, with constant cost of 

updates - every record induces a fixed computational burden that does not change with time.  

The main approach in utilising stream aggregates is as triggers, which can be added for store (when 

a new record is added), or to another stream aggregates. A stream pipeline can therefore be created, by 

adding triggers to many stream aggregates, where each depends on a previous (chaining stream 

aggregates). Combining stream aggregate filters and sets enable complex pipelines that contain many levels 

of data processing as well as modelling. Most commonly used stream aggregate functions in QMiner are 

presented in the following sections. 

4.3.1.1 Base and Store 

Stream aggregates can be managed by various objects in QMiner. Base5 is the main object in QMiner that 

represents the database and monitors what stores exist and what aggregates are subscribed to what stores. 

Stores6 are containers of records and are created through a base, either during initialisation of the base by 

using schema, or by using the createStore7 function of the base.  

Every time a new record is added to a store, the store triggers all its stream aggregates so that their states 

are updated. We can use store to actually store and manage records or we can use it only for schema (as a 

ghost store, which does not actually contain any records), which is used by the stream aggregates to create 

processing pipelines (aggregate set). 

EXAMPLE: Creating a store with schema in base constructor. 

// import qm module 
var qm = require('QMiner'); 
// using the base constructor 
var base = new qm.Base({ 
   mode: "createClean", 
   schema: [{ 
       name: "Class", 
       fields: [ 
           { name: "Name", type: "string" }, 
           { name: "StudyGroup", type: "string" } 
       ] 
   }] 
}); 
base.close(); 

                                                           
 

5 https://rawgit.com/QMiner/QMiner/master/nodedoc/module-qm.Base.html 
6 https://rawgit.com/QMiner/QMiner/master/nodedoc/module-qm.Store.html 
7 https://rawgit.com/QMiner/QMiner/master/nodedoc/module-qm.Base.html#createStore 
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EXAMPLE: Creating a store with the createStore function. 

// import qm module 
var qm = require('QMiner'); 
// factory based construction using base.createStore 
var base = new qm.Base({ mode: 'createClean' }); 
base.createStore([{ 
   name: "People", 
   fields: [ 
       { name: "Name", type: "string", primary: true }, 
       { name: "Gender", type: "string", shortstring: true }, 
       { name: "Age", type: "int"  } 
   ], 
   joins: [ 
       { name: "ActedIn", type: "index", store: "Movies", inverse: "Actor" }, 
       { name: "Directed", type: "index", store: "Movies", inverse: "Director" } 
   ], 
   keys: [ 
       { field: "Name", type: "text" }, 
       { field: "Gender", type: "value" } 
   ] 
}]); 
base.close(); 

 

4.3.1.2 Windowing (moving window) 

Time series window aggregator represents the window buffer for the computation of time series data 

aggregates. The window aggregator stores the values inside a moving window time frame and implements 

all the stream aggregate methods except getFloat() and getTimestamp(), which are implemented in signal 

processing aggregates presented in the next section. The time series window vector aggregate represents 

the values read from a time series window buffer.  

EXAMPLE: Time series window aggregate example8. It is usually used in combination with other stream 

aggregates, such as moving averages. 

var aggr = { 

   name: 'TimeSeriesAggr', 

   type: 'timeSeriesWinBuf', 

   store: 'Heat', 

   timestamp: 'Time', 

   value: 'Celsius', 

   winsize: 2000 

}; 

base.store("Heat").addStreamAggr(aggr);  

                                                           
 

8 https://rawgit.com/QMiner/QMiner/master/nodedoc/module-qm.StreamAggr.html#reset 

https://rawgit.com/rupnikj/qminer/master/nodedoc/module-qm.StreamAggr.html#getFloat
https://rawgit.com/rupnikj/qminer/master/nodedoc/module-qm.StreamAggr.html#getTimestamp
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4.3.1.3 Signal processing 

Signal processing aggregate calculates the value of a function on a window of stream measurements and 

implements at least two methods: getFloat() method; exposes the value, and getTimestamp() method: offers 

the timestamp of the newest record in the ŀƎƎǊŜƎŀǘŜΩǎ window buffer. In QMiner, the following list of signal 

processing aggregates are available: 

- Time series tick aggregator: a data adapter that connects storage (record fields) and other stream 

aggregates as it exposes the numeric fields as a time series stream aggregate; 

- Min aggregator: monitors the minimal value in the connected stream aggregator; 

- Max aggregator: monitors the maximal value in the connected stream aggregator; 

- Histogram aggregator: represents an online histogram. The aggregate defines an ordered set of 

points p(0),..., p(n) that defines n bins; 

- Moving Average (MA): calculates the moving average value of the connected stream aggregator 

values; 

- Exponential Moving Average (EMA): calculates the weighted moving average of the values in the 

connected stream aggregator, where the weights are exponentially decreasing; 

- Moving correlation aggregator: calculates the moving correlation of the stream aggregators, that it 

is connected to; 

- Moving covariance aggregator: calculates the moving covariance of the stream aggregators, that it 

is connected to; 

- Moving variance: calculates the moving variance of the stream aggregator that it is connected to. 

  



 
 

Page 24 of 39 

Contract No. 777596 

 

IN2D-T6.1-D-EVE-016-05 

 

02/05/2018 

 

EXAMPLE: Moving average aggregator example 9 using the windows buffer (timeSeriesWinBuf) aggregate 

to compute the moving average.  

// create a base with a simple store 

var base = new qm.Base({ 

   mode: "createClean", 

   schema: [ 

   { 

       name: "Heat", 

       fields: [ 

           { name: "Celsius", type: "float" }, 

           { name: "Time", type: "datetime" } 

       ] 

   }] 

}); 

 

// create a new time series stream aggregator for the 'Heat' store, that takes the values from the 'Celsius' field 

// and the timestamp from the 'Time' field. The size of the window is 1 day. 

var timeser = { 

   name: 'TimeSeriesAggr', 

   type: 'timeSeriesWinBuf', 

   store: 'Heat', 

   timestamp: 'Time', 

   value: 'Celsius', 

   winsize: 86400000 // 1 day in miliseconds 

}; 

var timeSeries = base.store("Heat").addStreamAggr(timeser); 

 

// add a min aggregator, that is connected with the 'TimeSeriesAggr' aggregator 

var ma = { 

   name: 'movingAgerageAggr', 

   type: 'ma', 

   store: 'Heat', 

   inAggr: 'TimeSeriesAggr' 

}; 

 

var movingAverage = base.store("Heat").addStreamAggr(ma); 

 

4.3.1.4 Resampler 

Resampler is a stream aggregator that creates new values that are interpolated by using the values from an 

existing store. TȅǇŜ ƻŦ ƛƴǘŜǊǇƻƭŀǘƛƻƴ Ŏŀƴ ōŜ ŜƛǘƘŜǊ άƭƛƴŜŀǊέΣ άǇǊŜǾƛƻǳǎέ ƻǊ άƴŜȄǘέΦ 

                                                           
 

9 https://rawgit.com/QMiner/QMiner/master/nodedoc/module-qm.StreamAggr.html#reset 
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EXAMPLE: The example 10 creates a new resampler stream aggregator for the 'Heat' store that takes the 

values from the 'Celsius' field and the timestamp from the 'Time' field. The interpolated values are stored 

in the 'interpolatedValues' store. The interpolation should be linear and the interval should be 2 seconds. 

var res = { 

   name: 'resamplerAggr', 

   type: 'resampler', 

   store: 'Heat', 

   outStore: 'interpolatedValues', 

   timestamp: 'Time', 

   fields: [{ 

       name: 'Celsius', 

       interpolator: 'linear' 

   }], 

   createStore: false, 

   interval: 2000 

}; 

var resampler = base.store("Heat").addStreamAggr(res); 

 

4.3.1.5 Merger 

The main function of a Merger stream aggregator is to merge records from two or more stores into a new 

store depending on the timestamp, where tȅǇŜ ƻŦ ƛƴǘŜǊǇƻƭŀǘƛƻƴ Ŏŀƴ ōŜ ŜƛǘƘŜǊ άƭƛƴŜŀǊέΣ άǇǊŜǾƛƻǳǎέ ƻǊ άƴŜȄǘέΦ 

 

Figure 4.3: Visualisation of merger output, using previous value interpolator 
 

  

                                                           
 

10 https://rawgit.com/QMiner/QMiner/master/nodedoc/module-qm.html#~StreamAggrResampler 
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EXAMPLE: The example11 creates a new merger stream aggregator that mergers the records of the 'Cars' 

and 'Temperature' stores. The records are interpolated linearly and stored in the 'Merged' store. 

var mer = { 

   name: 'MergerAggr', 

   type: 'merger', 

   outStore: 'Merged', 

   createStore: false, 

   timestamp: 'Time', 

   fields: [ 

       { source: 'Cars', inField: 'NumberOfCars', outField: 'NumberOfCars', interpolation: 'linear', timestamp: 'Time' }, 

       { source: 'Temperature', inField: 'Celsius', outField: 'Celsius', interpolation: 'linear', timestamp: 'Time' } 

   ] 

}; 

var merger = new qm.StreamAggr(base, mer); 

4.3.1.6 Custom made JavaScript aggregates 

Data pre-processing presents an essential step in the process of online data driven data model 

development. The main pre-processing operations in the modelling pipeline are: handling missing data, 

corrupt data handling, outlier detection, data segmentation, data normalisation Χ 

QMiner enables to easily create a custom-made aggregate for a specific pre-processing task. Creating a 

custom-made aggregate in QMiner is demonstrated on a case of handling corrupt data, which are a cause 

of different errors that can occur during the measurement or transmission. For example, measurements 

can have physically non-valid values, such as negative consumption. The example of creating custom 

aggregate for corrupt data is presented below.  

EXAMPLE: Custom made JS cleaning aggregate. The example from a prototype developed in MobiS project 
12demonstrates a simple custom-made JavaScript aggregate, specific for traffic prediction domain. In this 

specific example, traffic counter sensor reported speed of 999km/h, when there were no cars in the specific 

measuring intervals. By using custom made streaming aggregate, we can easily detect when the sensor 

counter value is 0, and change the speed to speed limit.

// If there is no cars, set speed to speed limit 

trafficStore.addStreamAggr({ 
    name: "fixSpeedWhenNoCars", 
    onAdd: function (rec) { 
        if (rec.NumOfCars === 0) { 
            rec["Speed"] = rec.measuredBy.MaxSpeed; 
            rec["TrafficStatus"] = 1 
        } 
    }, 
    saveJson: function () { return {} } 
}) 

                                                           
 

11 https://rawgit.com/QMiner/QMiner/master/nodedoc/module-qm.html#~StreamAggrMerger 
12 http://www.mobis-euproject.eu/ 
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4.3.1.7 Evaluation metrics 

Evaluation or Error metrics are used to evaluate and compare the fit and accuracy of forecasting models. 

Error metrics are essential tools for model evaluation and estimation as a metric for comparison of different 

options developed. Evaluation results therefore serve as a basic metrics for final model selection.  

For choosing the appropriate error measure, there are several regressions (e.g. mean absolute error, mean 

absolute percentage error, mean error, mean square error, R2 score, root mean square error) as well as 

classification metrics (e.g. precision, accuracy, recall, f1) built in QMinerΩǎ ƭƛōǊŀǊȅ13. Most are implemented 

recursively, meaning that we can use them both in classical offline mode, or as online streaming aggregates 

where the metric is updated with each new streaming record (prediction). 

EXAMPLE: Online regression error metrics as streaming aggregates. Example from MobiS project14. 

// create online regression metric instances 
var mae = new analytics.metrics.MeanAbsoluteError(); 
var mse = new analytics.metrics.MeanSquareError(); 
var rmse = new analytics.metrics.RootMeanSquareError(); 
var r2 = new analytics.metrics.R2Score(); 
 
// create custom aggregate for updating evaluation models 
trafficPredictionsStore.addStreamAggr({ 
    name: "evaluation", 
    onAdd: function (rec) { 
        mae.push(rec["true"], rec["predicted"]); 
        mse.push(rec["true"], rec["predicted"]); 
        rmse.push(rec["true"], rec["predicted"]); 
        r2.push(rec["true"], rec["predicted"]); 
    }, 
    saveJson: function () { return {} } 
}) 
 
// access errors 
mae.getError(); 
mse.getError(); 
rmse.getError(); 
r2.getError(); 

 

                                                           
 

13 https://rawgit.com/QMiner/QMiner/master/nodedoc/module-analytics-metrics.html 
14 http://www.mobis-euproject.eu/home 
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EXAMPLE: Example of online classification error metrics as streaming aggregates15. 
// create classification predictionCurve instance 
var classificationScore = new analytics.metrics.ClassificationScore(); 
 
// create custom aggregate for updating evaluation models 
eventsPredictionsStore.addStreamAggr({ 
    name: "evaluation", 
    onAdd: function (rec) { 
        classificationScore.push(rec["true"], rec["predicted"]) 
    }, 
    saveJson: function () { return {} } 
}) 
 
// access errors (accuracy, precission, recall, f1) 
classificationScore.accuracy(); 
classificationScore.precision(); 
classificationScore.recall(); 
classificationScore.f1(); 

 

4.3.2 Forecast modelling 

4.3.2.1 Feature extractors 

To represent the data into machine readable format, we have to map data records into linear algebra 

vectors or matrices applicable for machine learning algorithms. Algorithms that transform records into 

vectors (or matrices) are called feature extractors16 in QMiner. Several feature extractors can be combined 

into objects referred to as feature spaces17. A feature space object extracts a larger vector from a record by 

concatenating feature vectors obtained from all its feature extractors. Its main obligation is bookkeeping 

of global vector and names of individual features. The list of feature extractors in QMiner can be found in  

 

  

                                                           
 

15 http://www.mobis-euproject.eu/home 
16 https://rawgit.com/QMiner/QMiner/master/nodedoc/module-qm.html#~FeatureExtractor 
17 https://rawgit.com/QMiner/QMiner/master/nodedoc/module-qm.FeatureSpace.html 
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Table 4.1: QMiner primary feature extractors 

 

EXAMPLE: In order to be able to do modelling and prediction, feature vectors have to be constructed first. 

Which features will the model use, depends strongly on the data source. This is solved in a way, that for 

each data workflow we define a different set of features, attached to different extractors. An example for 

the traffic loop sensor from the MobiS project data sources can be seen below. 

// define feature space 
var ftrSpace = analytics.newFeatureSpace([ 
  { type: "numeric", source: testStoreResampled.name, field: "Speed" }, 
  { type: "numeric", source: testStoreResampled.name, field: "Gap" }, 
  { type: "numeric", source: testStoreResampled.name, field: "Occupancy" }, 
  { type: "numeric", source: testStoreResampled.name, field: "TrafficStatus" }, 
  { type: "numeric", source: testStoreResampled.name, field: "Ema1" }, 
  { type: "numeric", source: testStoreResampled.name, field: "Ema2" }, 
  { type: "multinomial", source: testStoreResampled.name, field: "DateTime", datetime: true } 
]); 

 

4.3.2.2 Linear Regression 

Linear regression is a well-established approach in machine learning. It does not demand large 

computational resources and usually yields to surprisingly good results (with regard to model complexity). 

This stream aggregator computes a simple linear regression given two streams and represents variates 

(input) and covariates (output).  

In QMiner, recursive linear regression 18 is implemented, which is the online (incremental) equivalent of the 

basic version and allows us to update the model at each new record. By updating a model with each new 

                                                           
 

18 https://rawgit.com/QMiner/QMiner/master/nodedoc/module-analytics.RecLinReg.html 

Name Type Description 

constant module:qm~FeatureExtractorConstant The constant type. Adds a constant value as a feature. 

random module:qm~FeatureExtractorRandom The random type. Adds a random value as a feature. 

numeric module:qm~FeatureExtractorNumeric The numeric type. Adds the numeric value as a feature. 

categorical module:qm~FeatureExtractorCategorical The categorical type. 

multinomial module:qm~FeatureExtractorMultinomial The multinomial type. 

text module:qm~FeatureExtractorText The text type. Creates the bag-of-words text 
representation. 

join module:qm~FeatureExtractorJoin The join type. 

pair module:qm~FeatureExtractorPair The pair type. 

jsfunc module:qm~FeatureExtractorJsfunc The jsfunc type. Allows creating a custom feature 
extractor. 

dateWindow module:qm~FeatureExtractorDateWindow The date window type. 

sparseVector module:qm~FeatureExtractorSparseVector The sparse vector type. 

https://rawgit.com/qminer/qminer/master/nodedoc/module-qm.html#~FeatureExtractorConstant
https://rawgit.com/qminer/qminer/master/nodedoc/module-qm.html#~FeatureExtractorRandom
https://rawgit.com/qminer/qminer/master/nodedoc/module-qm.html#~FeatureExtractorNumeric
https://rawgit.com/qminer/qminer/master/nodedoc/module-qm.html#~FeatureExtractorCategorical
https://rawgit.com/qminer/qminer/master/nodedoc/module-qm.html#~FeatureExtractorMultinomial
https://rawgit.com/qminer/qminer/master/nodedoc/module-qm.html#~FeatureExtractorText
https://rawgit.com/qminer/qminer/master/nodedoc/module-qm.html#~FeatureExtractorJoin
https://rawgit.com/qminer/qminer/master/nodedoc/module-qm.html#~FeatureExtractorPair
https://rawgit.com/qminer/qminer/master/nodedoc/module-qm.html#~FeatureExtractorJsfunc
https://rawgit.com/qminer/qminer/master/nodedoc/module-qm.html#~FeatureExtractorDateWindow
https://rawgit.com/qminer/qminer/master/nodedoc/module-qm.html#~FeatureExtractorSparseVector
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record, we can avoid known problems related to streaming data, such as concept drift, where there is a 

significant change in the system, which traditional offline model could not adapt to.  

Pros: Since the method is light weight and is capable of incremental learning, it is very suitable to the cases 

requiring many models to be computed or when low computational capabilities are available (such as 

microcontrollers), which is very useful for decentralised systems and edge processing. Another advantage 

is that (almost) no parameters need to be optimised for the model to produce good results. 

Cons: Since it is a linear model, it can perform a bit worse than other non-linear models in highly dynamic 

processes. In such cases, we need to consider the trade-off between the model accuracy and the model 

complexity, which is related to computational speed. By its nature, linear regression only looks at linear 

relationships between dependent and independent variables and assumes that the data are independent. 

If the data are not independent, the model can sometimes yield inaccurate results. Another drawback of 

the linear regression method is that outliers can have huge effects on the regression. 

EXAMPLE: Traditional (offline) usage of recursive linear regression method in QMiner. 

// Linear regression constructor 
var linreg = analytics.newRecLinReg({ "dim": ftrSpace.dim, "forgetFact":1.0 }); 
// Learning phase 
linreg.learn(ftrSpace.ftrVec(Training[trainRecId]), val.Value);} 
// Prediction phase 
var prediction = linreg.predict(ftrSpace.ftrVec(val)); 

 

EXAMPLE: For online usage, in QMiner we can create a stream aggregate which listens to all new records 

(trigger) and updates the model in case of new data added to the data store. 

Training.addTrigger({ 
 onAdd: function (val) { 
  // test prediction and remember it for later 
  var prediction = linreg.predict(ftrSpace.ftrVec(val)); 
  Training.add({ $id: val.$id, Prediction: prediction }); 
  // update model 
  var trainRecId = Training.getStreamAggr("delay").first; 
  if (trainRecId > 0) { linreg.learn(ftrSpace.ftrVec(Training[trainRecId]), val.Value); } 
});  
 

 

4.3.2.3 Support Vector Regression (SVR) 

In machine learning, support vector machines (SVMs, also support vector network) are supervised learning 

models with associated learning algorithms that analyse data used for classification and regression analysis. 

An SVM model is a representation of the examples as points in space, mapped so that the examples of the 
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separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped 

into that same space and predicted to belong to a category based on which side of the gap they fall19. 

The Support Vector Regression (SVR) uses the same principles as the SVM for classification, with only a few 

minor differences. The model produced by support vector classification (as described above) depends only 

on a subset of the training data, because the cost function for building the model does not care about 

training points that lie beyond the margin. Analogously, the model produced by SVR depends only on a 

subset of the training data, because the cost function for building the model ignores any training data close 

to the model prediction. However, the main idea is always the same: to minimise error, determining the 

hyper plane which maximises the margin, keeping in mind that part of the error is tolerated20. 

Pros: Capable of modelling non-linear and dynamic processes well. Online model, capable of incremental 

learning. They are also appropriate for large volume of multivariate streaming data, but enough data have 

to be provided. 

Cons: Computationally intense (slow prediction computation). There are usually also several parameters 

that have to be carefully optimised for a good prediction performance.  

EXAMPLE: SVM model usage in QMiner21. 

//SVM training set 
trainSet = svm.newTrainSet(); 
for (var i = 0; i < recs.length; i++) { 
  trainSet.add(ftrSpace, recs[i], recs[i].value, true); 
} 
//SVM parameters 
var svmParam = { c = 1.0, j = 1.0, eps= 0.1 };  
//Train Model (learn) 
var svmRegModel = svm.trainRegression(trainSet, svmParam); 
 

 

  

                                                           
 

19 https://en.wikipedia.org/wiki/Support_vector_machine 
20 http://www.saedsayad.com/support_vector_machine_reg.htm 
21 https://rawgit.com/QMiner/QMiner/master/nodedoc/module-analytics.SVR.html 
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4.3.2.4 K nearest neighbours 

K nearest neighbours (k-NN) is a type of instance-based learning, or lazy learning, where the function is only 

approximated locally and all computation is deferred until request. The k-NN algorithm is among the 

simplest of all machine learning algorithms, used both for classification and regression. The result is a 

collection of k sets of records, which are grouped by the similarity of their features. KMeans for regression 

problems is based on k-nearest neighbours, where the target is predicted by local interpolation of the 

targets associated to the nearest neighbours in the training set22.  

Pros: It is a relatively simple and light weight method that is usually better than baselines, but not better 

than more complex methods. It is a non-linear method that can find some patterns in historical data that 

linear models cannot. It is very robust to noise (especially if we use inverse square of weighted distance for 

computing distance). 

Cons: One major drawback for our use case is that k-NN method is not online, meaning that it has to iterate 

trough a collection of records every time we want to make a prediction and can become slow with time. 

Therefore, we use a buffer with a certain number of the last records, to avoid this problem. It is still a 

relatively simple method that can perform with good results, but more complex methods usually find more 

accurate results. 

4.3.2.5 Random Forests and Incremental Decision Tree 

Random forests or random decision forests are a system of learning methods for classification, regression 

and other tasks, that operate by constructing a multitude of decision trees at training time and outputting 

the class that is the mode of the classes (classification) or mean prediction (regression) of the individual 

trees23. 

By default, the Random forest algorithm is not an online algorithm and can take a lot of time to train and 

update the model. There are some variations that can reduce learning computational time by optimising 

input data, such as Very Fast Decision Trees learner (VFDT). The VFDT algorithm uses only a small sample 

of the available data instances when choosing the split attribute. This makes it suitable for processing data 

streams where the whole data set is not available or is too large to be stored in memory. To determine the 

number of examples needed to split a node, the algorithm uses the Heoffding or Chernov bound which 

guarantees that, with certain confidence, the attribute it has chosen is the correct one. 

In QMiner, an improved version of this algorithm is in development, which will enable incremental learning 

(online model). This algorithm will be used and tested in the future implementations and tests of prediction 

                                                           
 

22 https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm 
23 https://en.wikipedia.org/wiki/Random_forest 



 
 

Page 33 of 39 

Contract No. 777596 

 

IN2D-T6.1-D-EVE-016-05 

 

02/05/2018 

 

workflows. For the exploratory analysis phase, we will use a standard version of the random forest model 

from Scikit-learn Python library 2425. 

Pros: Since Random Forests models have very few parameters to tune and can be used quite efficiently 

with default parameter settings (i.e. they are effectively non-parametric) they are a good choice to use as 

a first cut when the underlying model is not known, or a decent model needs to be produced. It usually 

produces very good results, but it is slower than simpler linear regression models (trade-off between model 

complexity and speed has to be considered).  

Cons: The main limitation of the Random Forests algorithm is that a large number of trees may slow down 

the algorithm for real-time prediction. But the number of trees can be optimised as an input parameter. 

This is a known trade-off between accuracy and speed. We mentioned that the standard version of the 

Random Forests algorithm does not support incremental learning, but variations for processing streams 

exist. 

4.3.2.6 Stay Point Detection (SPD) 

Stay-point detector (SPD) is a special case of stream aggregate, working on a stream of geo-location data 

(raw GPS coordinates). The raw stream is aggregated into points with higher density for a given time 

(staypoint), and a set of points with lower spatial density (path). To be able to analyse locations (places) of 

the users, we first need to understand their location visits and their past mobility patterns. To some extent, 

raw GPS data contains this information through the distribution and density of points over time. However, 

the data are noisy and does not explicitly specify where (and how long) the user had stayed. For these 

reasons, we first employ a staypoint detection (SPD) algorithm, which is able to filter out GPS errors, 

pinpointing the location and accurately tracking the residence time at each location26. 

The results of our two-pass SPD algorithm are a list of cleaned (as opposed to raw GPS data) staypoints and 

trajectories of user movement (geo-activities). Besides the location, the descriptions of these activities also 

contain residence time (start time at the location and duration). These geo-activities represent the input 

data for the higher level analysis and modelling such as prediction of next location. 

  

                                                           
 

24 http://scikit -learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html 
25 scikit-learn.org 
26 http://ieeexplore.ieee.org/document/8089732/ 
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EXAMPLE: Example27 of SPD stream aggregate usage in QMiner 

// used only for schema 
// will not be used to hold records (push will not be called) 
var aggr = new qm.StreamAggr(base, { 
    type: "stayPointDetector", 
    store: store, 
    userField: "User", 
    timeField: "Time", 
    locationField: "Location", 
    accuracyField: "Accuracy", 
    activitiesField: "Activities", 
    params: { dT: 50, tT: 300 } 
}); 
 
//test  
var ts = Date.now(); 
for (var i = 0; i < 100; i++) { 
    // create QMiner wrapped record from JSON 
    var rec = store.newRecord({ 
        Time: ts + i, 
        Location: [Math.random(), Math.random()], 
        Activities: [20,15,22,23,50], 
        Accuracy: 1 
    }); 
    // calls onAdd on all stream aggregates registered on store 
    store.triggerOnAddCallbacks(rec); 
    var result = aggr.saveJson(); 
    console.log(result); 
    console.log(new Date(result.lastTimestamp)); 
} 

 

4.3.3 Power system modelling and fault detection 

Real data are expensive to acquire and may be limited to some specific use cases due to other operational 

ƭƛƳƛǘŀǘƛƻƴǎ όǎŀŦŜǘȅΣ ǇƭŀƴƴƛƴƎ ΧύΦ ¢ƘŜ ƻōƧŜŎǘƛve of task 6.3 is to fill in missing data, such as voltage and current 

which cannot be evaluated based on statistical patterns. Two methods are evaluated:  

- At train level, compressive sensing techniques coupled with stochastic multi-objective optimisation 

algorithms are excellent candidates to model those parameters without costly equipment on-board  

- At line level, power system simulation techniques, with linear optimal power flow equations to 

support the energy assets, such as generators, storage, loads and environmental constraints   

Those enriched data sets will be provided as inputs to task 6.2 to evaluate their effectiveness on the 

prediction accuracy. The power system modelling techniques also enable the detection of faults and power 

quality disturbances. A typical example includes detection of system imbalances through voltage sags. 

Based on the voltage sags signatures the fault type, the fault location, the system grounding and the 

                                                           
 

27 https://github.com/QMiner/QMiner/blob/master/src/third_party/geospatial/example/staypoint.js 
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connection of rolling stock can be estimated. Once these information become available, fast and accurate 

estimation of possible abnormal operational patterns can be achieved leading to significant reduction in 

LCC.   

4.3.4 Operation optimisation 

The huge volume of data that will be collected and stored in the data management platform will be 

effectively used within task 6.4 to address the energy efficient railway operation problem in long, mid and 

short-term basis. This planning can involve the identification of daily time-tables, type of rolling stock to be 

used, number of units/carriages needed and energy aware driving profile strategies adopting scalable 

optimisation methods. The ultimate objective is the development of solutions that are in line with the 

άLƴǘŜƭƭƛƎŜƴǘ ǘǊŀƛƴέ ǇŀǊŀŘƛƎƳ ŜƴŀōƭƛƴƎ ǘƘŜ ƻǇŜǊŀǘƛƻn of the rolling stock in an autonomous mode (driverless 

trains). The positioning solution based on low cost Light Detection and Ranging technologies (LIDARS) will 

be also exploited for the development of in-tunnel cartography scheme that will assist in optimising the 

operation of the railway system. 

 

5 !ƴŀƭȅǘƛŎǎ ŀƴŘ Ǿƛǎǳŀƭƛǎŀǘƛƻƴ ŀǇǇƭƛŎŀǘƛƻƴ 

5.1 Structure 
The Reims tram is equipped with many meters allowing the measurement of different physical quantities. 

These quantities are used in the project to model and forecast the energy consumption of the tram. A 

visualisation tool is therefore needed to easily access the measured data as well as the forecasted data. A 

web-based application will be developed to present the data themselves (their evolution with time and 

their correlations) and the results of the forecasting and of the modelling. Moreover, this tool will allow to 

easily visualise the accuracy of the models, with a visual comparison of the measured and of the 

forecasted/modelled data, in addition to displaying the results of the different evaluation metrics. 

The different types of data described in section 2.1 will be displayed:  

- the pre-processed data that will be received through a Kafka flux; 

- ǘƘŜ ŦƻǊŜŎŀǎǘŜŘ ŘŀǘŀΣ ǘƘŜ ŦƻǊŜŎŀǎǘ ŀŎŎǳǊŀŎȅ ŀƴŘ ǘƘŜ ƳƻŘŜƭΩǎ ǇŀǊŀƳŜǘŜǊǎ ǊŜŎŜƛǾŜŘ ǘƘǊƻǳƎƘ ŀ YŀŦƪŀ 

flux; 

- the historical data received through direct requests via a secured API. 

The application is based on Node.js, an open-source JavaScript environment. The communications between 

the web-server and the client side are ensured by Socket.IO, a JavaScript library for real-time 

communications and analytics. This application will be deployed on the same machine where the global 

infrastructure detailed in section 2.3 is located.  
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5.2 Description of the screens 
The application is constituted by several configurable screens. The first one is a dashboard displaying the 

real-time data with a geolocation map and a synchronised graphic (Figure 5.1). 

 

Figure 5.1: Dashboard with real-time data 
 

The second screen displays the historical data and includes a configurable panel as well, which enables the 

user to select the physical quantity he/she wants to display and/or the time interval. Three types of graphics 

are available in this screen: a time series graphics to visualise the evolution of the selected measurement 

with time (line chart, Figure 5.2), a scatter chart to study correlations between different physical quantities 

(Figure 5.3), and synchronised graphics to display mutual dependencies between physical quantities as a 

function of time (Figure 5.4).  
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Figure 5.2: Time evolution of the selected measurement (line chart) 
 

 

Figure 5.3: Scatter chart 
 




