

5G and edge computing in railways: applications and challenges (IN2DREAMS project) Stefanos Gogos & Markos Anastasopoulos

5G and edge computing in railways: applications and challenges (IN2DREAMS project)

Stefanos Gogos

Technical Affairs Manager

UNIFE

Markos Anastasopoulos

Senior Research Associate

University of Bristol

Joined UNIFE in October 2013. He started his career as a Structural Engineer, following his degree in Civil Engineering with Architecture Researcher at the HPN Group, University of Bristol, U.K. Co-author of over 90 papers in international journals and conferences. Recipient of the Best Doctoral Dissertation Award and the Best Paper Award at the 17th IEEE/IFIP ONDM Conference.

ICTFOR RAILWAYS Content Outline

IN2DREAMS intro

- Project partners
- Challenge & Scope
- High-level objectives
- Project structure
- Links with S2R

5G systems

- Motivation: 5G Vision
- Overview of 5G architectures: The IN2DREAMS solution
- IN2DREAMS Building blocks (Multitechnology access, Heterogeneous Transport Network Interconnecting Compute Resources with Remote Radio Units)

Vertical use case: Railway systems

- Current status
- 5G for railways
- Use case: Smart metering for railway systems over 5G Networks

Conclusions

Project Partners

PROJECT COORDINATOR		TECHNICAL LEADERS	
THE EUROPEAN RAIL INDUSTRY		Detvision	UNIVERSITÀ DEGLI STUDI DI GENOVA
Cefriel POLITECNICO DI MILANO	Evolution Energie	IASA	ISKRATEL
KU LEUVEN	LEM	pure LiFi	RI
GRUPPO FERROVIA ITALIANA	University of BRISTOL	Universität Konstanz	

ICTFOR RAILWAYS

Challenge & Scope

- Predicted growth of transport, especially in European railway infrastructures, is expected to introduce a dramatic increase in freight and passenger services by the end of 2050.
- To support sustainable development of these infrastructures, novel data-driven ICT solutions are required.
- These will enable monitoring, analysis and exploitation of energy and asset information for the entire railway system including power grid, stations, rolling stock and infrastructure.
- IN2DREAMS addressed these challenges through two distinct work streams: Work Stream 1 (WS1), focusing on the management of energy-related data and Work Stream 2 (WS2), focusing on the management of asset-related data

ICTFOR RAILWAYS

High-level Objectives

Work Stream 1 – Management of Energy-related Data

 WS1 aimed at removing the current and anticipated limitations of REMS, by making these capable of supporting a much wider array of requirements than it is currently the case.

• Work Stream 2 – Management of Asset-related Data

 WS2 aimed at improving efficiency and sustainability of the railway asset data management, by applying research advances in machine learning, data visualization and decentralized architecture with smart contracts.

Project Structure

ICTFOR RAILWAYS

Links with Shift2Rail

Join us at the IN2DREAMS final conference!

Where: Milan When: 2nd October 2019

To register keep an eye on our public website: www.in2dreams.eu

ICTropy Solution Motivation - 5G Vision

New business opportunities for a large variety of use cases – ICT & Verticals

■5G Networks to be future proof: designed to evolve and not to be replaced

Overall Architecture and Building Blocks

ICTFOR

RAILWAYS

Operational Data Management Platform

Integrated Communication Platform

Sensing/Monitoring Devices

ICTropy Building blocks (I)

Sensing/Monitoring Devices and Data Management Platform

- Interconnecting a variety of sensing and monitoring devices providing on-board and track side energy measurements.
- Supporting applications related to surveillance, observation, monitoring of environmental parameters (temperature, CO2, humidity, noise), energy monitoring (voltage, current), localization and environmental parameters.

ICTFOR RAILWAYS Building blocks (II)

Integrated Communication Platform

- Based on a heterogeneous secure and resilient telecommunication platform, consisting of both wireless (e.g. Long Term Evolution – LTE, WiFi, LiFI) and wireline (e.g. optical) systems converging energy and telecom services.
- This infrastructure interconnects a plethora of monitoring devices and end-users to the OSS.
- Control and management of the integrated network infrastructure using an open SDN-based network management framework

Building blocks (III) RAILWAYS

ICTFOR

ODM Platform

ODM platform offering Scalable Data Collection, Aggregation, Processing and Interfaces offering the following features:

- Operation in accordance to the cloud computing paradigm
- Secure access to data based on a proven user management system
- Hybrid scalable data storage mechanisms based on open source SQL/Non-SQL DBs
- Large-scale data processing engine to machine learning, execute (de) compression algorithms or extracting analytics data.
- Multi-protocol support: MQTT, AMQP, Sockets, etc).
- Synchronization

ICTFOR RAILUAYS Communication Networks for railways

Basic Network Segments of railway systems

- ON_BOARD
- ON_BOARD TO TRACKSIDE
- TRACKSIDE TO OPERATIONS CONTROL CENTER

ICTFOR RAILWAYS

Railway Communication Systems: Challenges

<u>#1</u> On-board segment: Multiple-application specific networks

• Increased Operational/Maintenance costs

Source: http://www.questertangent.com/solutions/train-communication-networks/

ICTFOR

Railway Communication RAILUAYS Systems: Challenges

#*2* On-board to trackside: based on 3G/4G for passengers and GSM-**R** for operators

- Service disruptions, non-guaranteed QoS across the track
- Example: User 1 (2) associated with provider 1 (2)
 - Provider A: High SNR, region A. Provider B: High SNR, region B

ICTFOR RAILWAYS

Railway Communication Systems: Challenges

<u>#3</u> On-board-to-trackside (cont)

 Inefficient use of resources i.e., highly underutilized BBU resources, especially in rural environments, low bandwidth (for GSM-R in the order of kbps)

#4 Trackside-to-operations <u>control center</u>

• Vendor Specific i.e.

SG-Applications – Sharing of ON BOARD services

#1: Common platform for operational and user services

• Achieved through infrastructure slicing and virtualization

ICTFOR RAILWAYS Field Validation

Service Tags:

- VLAN 10: Internet Access and file transfers (Passengers services)
- VLAN 11: CCTV (Railway services)
- VLAN 12: *Management*

Transport Tags:

- VLAN 80: **Only on-board**. Between the on-board FlowBlaze and the Rear Antenna of each TN201-LC unit (one VLAN 80 per unit)
- VLAN 81: **Only on-board**. Between the on-board FlowBlaze and the Front Antenna of each TN201-LC unit (one VLAN 81 per unit)
- VLAN 100-107: Between the Martorell FlowBlaze and each of the eight DN101-LC trackside antennas (one per antenna)
- VLAN 1: To avoid loops

ICTFOR SG-Applications – **ON_BOARD to TRACKSIDE**

#2: Integrated multi-technology on-board and trackside network -- of mmwave technology

Coordination of the remote antennas (RU) adopting the C-RAN paradigm

On-board elements, mmWave antennas

Antenna Module (on the train roof)

• Demo location

ICTFOR FORMUTE SG-Applications – Multitechnology access and transport

#3: Integrated multi-technology ground infrastructure (Lab validation @Millennium Square Bristol)

ICTFOR SG-Applications – Softwarization and Optimization

- #4 Energy Metering and Optimization
- Objective: Fast and reliable monitoring, analysis and optimization of the whose railway system including the railway electrification system, the rolling stock and the track.

Whereas Access, Hunsport

ICTFOR RAILWAYS Proposed Solution

- Adopting the concept of Mobile Edge Cloud (MEC)
- Efficient coordination of disaggregated compute resources
 - Collaborative edge-central cloud data processing \rightarrow reduced latency

ICTFOR RAILWAYS Field Trials

REIMS Tramway

- Step 1: On-board and trackside data collection
- Step 2: Transmission of data to the central cloud
- Step 3: Knowledge extraction based on Neural Networks
- Step 4: Push the trained Neural networks at the edge to enable real time optimal decision making

@Network Rail

Use case: Fault detection over high frequency sampling at substations

@REIMS

Fault detection in an operational tramway system

700

700 800

Synchronization of measurements

- Positioning (Without the need of GPS) using telecom network
 - In-tunnel positioning using LiFi

ICT FOR Applications

- Estimation of trackside from on-board measurements (software sensors using purposely developed NN models)
- Energy forecasting using LSTM NNs

Optimization (optimal driving profiles) (using Machine learning Techniques)

ICTFOR RAILUAYS Next steps and Large-Scale Demos

- Enhanced mobile broadband under high speed mobility in Rail environments
 - eMBB functionality through heterogeneous technology access for onboard network connectivity in a railway setup
 - Interconnection of on-board devices with the trackside and the trackside with the core network

ICTFOR RAILUAUS Next steps and Large-Scale Demos

- **Objective**: common platform for Mission Critical (MC) voice and video and other MC rail-related data and signalling services addressing onboard and trackside elements.
 - a softwarized end-to-end MC services solution that will enable the enhanced support of railway specific services
 - A softwarized MC solution for rail environments enabling control and management of the on-board elements and trackside compo (i.e. interlockings)

